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Preface

"Paradox" conjures up arrows and tortoises. But it has a speculative, gedanken
ring: no one would dream of really conjuring up Achilles to confirm that he
catches the tortoise. The paradox of Einstein, Podolsky, and Rosen, however, is
capable of empirical test. Attempted experimental resolutions have involved
photons, but these are not detected often enough to settle the matter. Kaons are
easier to detect and will soon be used to discriminate between quantum
mechanics and local realism.

The existence ofan objective physical reality, which had disappeared behind
the impressive formalism of quantum mechanics, was originally intended to be
the central issue of the paradox; locality, like the mathematics used, was just
assumed to hold. Quantum mechanics, with its incompatible measurements, was
born rather by chance in an atmosphere of great positivistic zeal, in which only
the obviously measurable had scientific respectability. Speculation about occult
"unobservable" quantities was viewed as vacuous metaphysics, which should
surely form no part of a mature scientific attitude. Soon the "unmeasurable, "
once only disreputable, vanished altogether. One had first been told not to worry
about it; then, as dogma got more carefully defined, one was assured that the
unobserved was just not there. This made it easier not to think about it and to
avoid hazardous metaphysical temptation.

If a theory indicates, in such a climate, that two quantities cannot be
measured at the same time, a first, moderate reaction, is exclusive interest in
one or the other. Only one can be "implemented" at a time, so why worry about
both together? The next step, once one has got used to the first, is to clear up the
ontological background by doing away with the complementary quantity alto
gether. It is wrong to say that it had a precise reality before measurement, for the
situation before measurement was unmeasured. What little there is of reality has
to be invoked by measurement, and complementary realities cannot be invoked
together.

Common sense suggested that measurement revealed the value of one
quantity in an imperfectly described reality while it disturbed others; according
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to dogma, on the other hand, measurement implemented one aspect ofa nebulous
but completely described reality to the detriment of complementary features.
With a single particle the matter could not be decided, so another particle was
introduced. The reality criterion of Einstein, Podolsky, and Rosen allowed
elements of reality corresponding to incompatible descriptions to be assigned
to an object through potential measurements on another.

With contiguous objects, the implementation of an aspect of one might
cause the implementation of a corresponding aspect of the other. According to
quantum mechanics, however, elements of reality and incompatible descriptions
can be attributed by a measurement made at any distance. At first, the possibility
of action at a distance was hardly even considered or was dismissed as
necromancy: "That would be magic," as Schrodinger said. This magic was,
however, soon enthusiastically embraced by many, who welcomed it as an exotic
influence that entangled the constituents of a world whose workings would
otherwise have been too straightforward. Of course Einstein not only believed
that the world really existed, but did not accept such nonlocality:

If one asks what, irrespective of quantum mechanics, is characteristicof the world of
ideasofphysics,one is firstof all struck by the following: the conceptsof physics relate
to a real external world, that is, ideas are establishedrelating to things such as bodies,
fields, etc., which claim a "real existence» that is independent of the perceiving
subject. .. . It is a further characteristicof these physical objects that they are thought
of as arranged in a space time continuum. An essential aspect of this arrangement of
things in physics is that they may claim, at a certain time, to an existence independent
of one another, providedthese objects 'are situated in differentparts of space'. Unless
one makes this kind of assumption about the independenceof the existenceof objects
whichare far apart from one another in space . .. physical thinking in the familiarsense
would be impossible. . . . The following idea characterises the relativeindependenceof
objects far apart in space (A and B): external influenceon A has no direct influenceon
B; this is known as the 'principle of contiguity' . . . . If this axiom were to be
abolished. . . the postulation of laws which can be checked empiricallyin the accepted
sense, would become impossible,'!'

If the various parts of the world influenced each other instantaneously, no
regularities could be observed, no laws established.

The existence of an objective reality is becoming more and more difficult to
contest. The very practice of physics, chemistry, biochemistry, neurophysiology,
etc., strongly supports the reality of objects, for it is now understood how signals
that give rise to perceptions are emitted, how they are propagated, and, at least
partially, how neurophysiological processes transform the signals into percep
tions. The realist postulate so understood is hardly arbitrary because the active
relation between the subject and the world in which he operates establishes, in a
sense, the existence of an objective reality a posteriori. Realism was character
ized by de la Peiia and Cetto(2) as follows:
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Realism is a philosophical term to which there correspond many nonequivalent
notions. ... In its broad ontological meaning, (objective) realism postulates that
independently of our theories and prior to them, there is an objective reality; in
other words, it posits the existence of an independent reality which precedes any effort
to disclose it. The task ofscientific endeavour is just to disclose the nature of this reality
and the laws of behaviour of its things. On the epistemological plane, realism opposes
subjectivism; however, there is a rich variety of epistemologic versions of realism.

vii

Bell derived his celebrated inequality, however, from realism and locality,
and showed that it is grossly violated by quantum mechanics. So it is impossible
to accept realism, locality, and quantum mechanics. The fact that experiments
performed to decide the matter have not refuted a genuine (that is, weak) Bell
inequality is well known to the experts, but there is a widespread belief that this is
only due to the nonideality of the measuring devices (in particular the low
efficiency of available photon counters). It is also believed that this difficulty will
eventually be overcome'<"

I always emphasize that the Aspect experiment is too far from the ideal in many ways
counter efficiency is only one of them. And I always emphasize that there is therefore a
big extrapolation from practical present-day experiments to the conclusion that
nonlocality holds. I myself choose to make the extrapolation, for the purpose at least
of directing my own future researches. If other people choose differently, I wish them
every success and I will watch for their results. ...

The very possibility of applying the reality criterion of Einstein et al. and
deducing Bell's inequality represents a kind of ontological violation, not only of
complementarity but also of Heisenberg's uncertainty relations. It is a violation
accepted only by realists, however, because(4):

The uncertainty principle "protects" quantum mechanics. Heisenberg recognized that
if it were possible to measure momentum and position simultaneously with a greater
accuracy, quantum mechanics would collapse. So he proposed that it must be
impossible. Then people sat down and tried to figure out ways of doing it, and
nobody could figure out a way to measure the position of anything-a screen, an
electron, a billiard ball, anything-with any greater accuracy. Quantum mechanics
maintains its perilous but still accurate existence.

As noted by Croca(5) the situation is rapidly changing . The theoretical resolution
limit of a microscope was established in the late XIXth century by Abbe and
Rayleigh from diffraction theory as half wavelength (A/2). The basic working of
these microscopes is a fundamental example of the validity of the Heisenberg
uncertainty relations. In the middle of the 80s this picture changed drastically
with the development of a new generation of microscopes that in practice violate
Abbe's theoretical barrier. The new generation of microscopes is typified by the
scanning tunnelling electron microscope, for which Binnig and Rohrer(6) received
the Nobel prize. The scanning tunnelling microscope triggered a whole variety of
Scanning Probe Microscopes (SPM), where the word "Probe" can be replaced by
Force (SFM), Capacitance (SCM) and Ion Conductance (SICM), opening a new
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era for the study of the micro world. Similar achievements were also obtained in
the optical domain. In 1984 Pohl et al.(7) were able to demonstrate the feasibility
of a scanning apertureless optical microscope based on Near-field Optics
(SNOM) with a spatial resolution of A/20. Ten years later it was possible to
attain a resolution of A/50 or even better.(8) These authors did not consider the
implications of their accomplishments for fundamental physics , but Croca
stressed that the way leading to a violation of Heisenberg's inequalities acceptable
by all physicists, whether realists or positivists, seems now to be finally open.

The present book does not try to cover all the important issues concerning
the foundations of quantum theory, but focuses on the Einstein, Podolsky, and
Rosen paradox. Another book providing an adequate background for anyone with
a graduate-level knowledge of quantum mechanics to follow the exciting new
developments in this area has recently been written by D. Home(9) who has
managed to give a fair and balanced presentation of different viewpoints,
notwithstanding his own preference for the realist approach.

The book is organized as follows. The first chapter is historical and traces
the development of the EPR paradox from the original argument of Einstein et al.
(1935) to Wigner's probabilistic formulation of Bell 's inequality (1970), dealing
with Bohr's reply to Einstein et al. (1935), Schrodinger's (1935) and Furry's
(1935) contributions, Bohm's simplification (1951), and Bell's inequality (1965)
along the way. In the second chapter the principles of realism and locality are
looked at, Bell's inequality is deduced from them, and other formulations of the
paradox are considered. Other ways of discriminating between local realism and
quantum mechanics are examined in the third chapter, in which the distinction is
also made between weak inequalities, deduced from local realism alone and never
violated experimentally, and strong inequalities, which are easier to violate
because they depend on further assumptions regarding detection . The more
general probabilistic treatment, which rests on a generalization of the determi
nistic reality criterion used by Einstein et al., is also dealt with. In the fourth
chapter inequalities are deduced to distinguish local realism and quantum
mechanics for pairs of neutral kaons . Proposed solutions, including variable
probability of detection, are reviewed in the fifth chapter.
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Chapter 1

Early Formulations

The EPR paradox has evolved a good deal during the 35 years between the
original paper of Einstein, Podolsky, and Rosen and Wigner's probabilistic
version of Bell's inequality in 1970. It began as an experimentally impossible
gedankenexperiment-with such physical idealizations as monochromatic plane
waves and Dirac o-functions-in which the fundamental reality criterion was
formulated. Interference was not explicitly involved. Phase relations in config
uration or tensor product spaces were given a central role by Furry and
Schrodinger, Bohm simplified the paradox by reformulating it in terms of
dichotomic observables regarding spin-t particles, and addressed the experi
mental issue with Aharonov. Then in 1965 Bell deduced his celebrated inequality
from the principles of local realism, and showed that it was grossly violated by
quantum mechanical interference . Stronger inequalities and experiments to test
them soon followed.

1.1. THE ORIGINAL EINSTEIN-PODOLSKY-ROSEN ARGUMENT

Position in quantum theory is represented by a linear Hermitian operator Q,
which acts as a multiplication operator, multiplying the wave function by the
independent variable q. So the eigenvalue equation

Qu(q; x) = qu(q ; x)

is solved by an arbitrary real value of q and by the corresponding eigenfunction

u(q; x) = o(x - q) (I)

which is a Dirac o-function. The wave function (I) indicates a fixed position q.
Since it can be expressed as

( ) 1Jd I ( . ,x - q)u q;x = Ii ![J exp tp -li-

all values of momentum are equally likely.

1

(2)
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The momentum operator is the same as the position operator in momentum
space and has the form

a
P = -il1ax

in position space. The eigenvalue equation

Pv(p; x) = p v(p ; x)

is solved by arbitrary real values ofp and by the corre sponding eigenfunctions:

(iPX)v(p ; x) = exp T (3)

The position density Iv(p; x)1 2 of the wave function (I) is constant, so all
positions are equally probable.

Whereas state u(q; x) indicates a precise pos ition, momentum is completely
undetermined. The monochromatic plane wave v(q ; x) , on the other hand,
represents an exact momentum but an indefinite position. The incompatibility
between position and momentum is expressed by the commutator

[Q,P] = iii (4)

not vanishing.
When the value ofa measurable quantity can be predicted with certainty, it is

natural to attribute a " reality" to the quantity and, hence , to the object in question.
This attribution does not, however, necessarily depend on the actual performance
of a measurement; it can be made , for instance, before a measurement and be
eventually confirmed by measurement. Einstein, Podolsky, and Rosen (l) gave the
following precise formulation of the idea:

If, without in any way disturbing a system, we can predict with certainty (i.e., with
probability equal to unity) the value of a physical quantity, then there exists an element
of physical reality corresponding to this physical quantity.

Application of the reality criterion to the delta function (I) allows the
attribution of an element of reality, a real position q, to the object in question.
Another element of reality corresponding to momentum P can likewise be
attributed to the same object by an application of the reality criterion to the
wave function (3). The notations u(q; x) and v(p; x) indicate explicitly the
objective physical properties q and p of the respective physical states. All this
applies only at a particular time to. The wave function (1), for instance, would
explode if allowed to evolve .

The elements of reality corresponding to P and Q cannot, using the EPR
reality criterion, be attributed to a single object at the same time. So it is
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0------.
13
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a

FIGURE 1.1. The EPR paradox involves two correlated quantum systems ex and ~. In later versions
of the paradox the systems are assumed to move in opposite directions and to be separated far away
from one another.

consistent with the quantum formalism to assume that when P is measured and
assumes a definite value, any previous element of reality corresponding to Q is
undermined by the action quanta exchanged between the measuring apparatus
and the observed atomic object. The attribution of elements of reality in such
cases is pointless.

Things change significantly when two correlated quantum objects (CJ. and ~)

are considered (Fig . 1.1). As is well known, the wave function can be assigned
almost arbitrarily at a given instant, the ensuing evolution being given by the
time-dependent Schrodinger equation. Possible fixed-time wave functions for the
system e = CJ. + ~, made up of the subsystems CJ. and ~, are

<p(qo ; Xl' X2) =Jdq' c(q')ucr(q'; xl)up(qo + q'; x2)

<p(Po; Xl' X2) =Jdp' c(p')Vcr(p'; Xl)Vp(PO - p'; x2)

(5)

(6)

where the notation for fixed-position and fixed-momentum wave functions is the
same as before, the only change being the specification of the quantum object (CJ.

or ~) to which they refer.
The meaning of <p(qo; Xl' x2) is the usual one: for instance, a position

measurement on CJ. will give a result contained in the interval q' -+ q' + dq' with
probability Ic(q')12 dq'. However, if q' has been found for CJ. from (5), it can be
predicted that a position measurement for ~ will certainly give the result qo + q' .
In other words, correlated position measurements made on CJ. and on ~ will lead to
results whose difference certainly equals qo. It can then be concluded that to qo
there corresponds an element of reality of CJ. + ~ . One can likewise conclude, from
<p, that CJ. + ~ has an element of reality corresponding to the sum Po of the
momenta.

The simultaneous attribution of qo and Po to a pair of quantum objects is no
longer excluded a priori-as with q and p for a single object-since the
difference of positions and the sum of momenta are represented by commuting
operators:

(7)
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(9)

Einstein, Podolsky, and Rosen were able to find a wave function that allows the
simultaneous attribut ion of the two elements of reality, namely

I J ' [i(XI - x2 + qO)P']\j!(qo ,Po;Xl ' X2) =h dp exp Ii (8)

which can be written in the form (6) with Po=0 and with c(p') = l/h (apart from
a constant phase factor). It can also be written in the form (5) [with c(q') = I]
since the integral in (8) gives

\j!(qo , 0; Xl ' X2) = 8(Xl - X2 + qo)

=Jdq' 8(Xl - q')8(q' - X2 + qo)

These results were used by EPR to establish that the quantum-mechanical
description of physical reality cannot be complete. A theory is considered
complete when every element ofphysical reality attributable to a certain physical
system in a given state has a counterpart in the mathematical description
provided by the theory for that physical situation. For example, the wave function
(8) would provide a complete description of the pair (ex, ~) if no further elements
of reality beyond qo and Po could be attributed to the pair. It can, however, be
established that individual positions and momenta of ex and ~ do possess a
physical reality, leading thus to the conclusion that the quantum-mechanical
description provided by (8) is not complete.

Consider a very large set E of similar pairs (ex, ~) all described by the wave
function (8) (Fig. 1.2). It can then be predicted that measurements of the positions
of ex and ~ performed on individual pairs will give results that always satisfy the

FIGURE 1.2. Set E is composedof (ex, P) pairs. £, (£2) is the subset of E on the ex's of which a
measurement of position(momentum) is performed. The EPR argumentleads to the conclusion that
elements of realityconcerning positionand momentum can be attributed simultaneously to all ex's and
p>s of e.
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relation X2 - Xl = qo' Similarly, measurements of the momenta of (X and ~

performed on (other) individual decay processes will give results PI and P2 that
'always satisfy the relation PI +P2 =Po = O.

Now consider a subset E I of E not previously subjected to measurements
and perform position measurements on all the (X's of E1; let X; ,x'{, . . . denote the
values obtained. It can then be predicted with certainty that simultaneous
measurements of the position of the Ws will give X; - qo for the first pair,
x'{ - qo for the second pair, and so on. One can then invoke the EPR criterion of
physical reality and conclude that to the position of ~ there corresponds an
element of physical reality. It is natural to conclude that this element of reality
exists independently of measurement, for otherwise the measurement on (X would
have created ~ 's element of reality at a distance and instantaneously. So to the
position of ~ there corresponds an element of reality for all the pairs of the full
ensemble E.

Likewise for momenta: consider a subset E2 of E, perform a momentum
measurement on all the (X's of E2, and let P; ,pT, ... denote the results obtained.
Since it can be predicted with certainty that subsequent measurements of the
momentum of ~ will give -P; for the first pair, -pT for the second pair, and so
on, it can also be concluded that to the momentum of ~ there corresponds an
element of reality for all Ws ofE2• Provided this element ofreality was not created
instantaneously by the distant measurement on e, one can then extend the
foregoing conclusion to the whole of E. Clearly the choice of the system (« or
~) on which measurements are performed is arbitrary: to the position and
momentum of particle (x, too, there therefore correspond simultaneous elements
of reality in the whole ensemble E.

Individual positions and momenta are accordingly considered real before
measurements, in an indirect sense, for all objects «xand ~) ofE; the sense being
that there exists something in the physical reality of (X and ~ that leads necessarily
to preassigned results if a measurement of one or the other of the two observables
is made.

Since the wave function (8) describes these quantities a priori as indetermi
nate, one must necessarily conclude, on the basis of the given definition of
completeness, that the description of physical reality provided by (8) is not
complete, In 1935 this was the essence of the EPR paradox, which was then only
an argument to indicate the incompleteness of the existing theory.

1.2. BOHR'S REPLY: COMPLEMENTARITY

Bohr(2) claimed that his complementarity-"a new feature of natural
philosophy't-s-dispensed with the paradox. This complementarity was supposed
to imply a final renunciation of the classical ideal of causality and to require a
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radical revision of common attitudes to physical reality. Bohr contested not the
EPR demonstration of incompleteness, whose validity he did not question, but its
premises, which, he claimed, did not apply in the atomic domain .

A process is causal, for Bohr, if it takes place according to well-defined and
identifiable rules, the most important being the laws of conservation of energy
and momentum. The physicist who studies the phenomena of the atomic domain
will naturally try to use his or her macroscopic preconceptions and to describe
atomic processes as taking place both in space and time and according to energy
and momentum conservation. However, he or she will discover that it is not
possible to do so because quantum observables described by noncommuting
operators cannot be measured simultaneously. The measurement of one of them
in general destroys previous knowledge about others.

The character of complementarity can best be illustrated with space
localization (position measurement) and causality implementation (momentum
measurement). Space localization can be achieved by measuring position with
infinite precision so that the indeterminacy L\x vanishes . A measurement yielding
the position q turns the wave function into a 8-function 8(x - q); but such a 8
function again expresses a complete indefiniteness in momentum, as it can be
written as a superposition of all possible plane waves with coefficients of the
same modulus. Whatever may have been known about momentum before is thus
lost. Hence, there can be no evidence about momentum conservation if nothing is
known about momentum. Localization in space therefore leads to an abandon
ment of the causal description .

Symmetrically, in a different experiment, one could decide to implement the
causal description by measuring momentum with infinite precision . The wave
function would then become a plane wave. But this undermines the spatial
description of the quantum phenomenon completely, since nothing is known
about position. Causal description therefore precludes spatial description.

The two possibilities, space-time and causality, are hence mutually incom
patible . Bohr concludes that in the atomic world it is, in principle , impossible to
give a picture ofquantum processes as developing causally in space and time, and
that this element of irrationality is introduced in quantum physics by the finite
value of Planck's constant. For these reasons it becomes necessary in his opinion
to limit the interest of the physicist to the exclusive consideration of acts of
observation.

Hence, no paradox exists when one considers two correlated systems
described by the wave function (8). Consider two apparatuses QI and PI (Qz
and Pz) capable of performing, respectively, position and momentum measure 
ments on the system cr(~) . If one chooses to use QI and Q2, the wave function (8)
predicts that the results XI and Xz will be precisely correlated: XI - X2 = qo. If,
instead, one chooses to use PI and Pz, the wave function (8) predicts a precise
correlation of the results PI and pz: PI +Pz = O. The two apparatuses QI and PI
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FIGURE 1.3. Bohr and Einstein walk down a boulevard in Brussels during the 1930 Solvay
Conference (AlP Emilio Segre Visual Archives).

are mutually incompatible: one can choose to employ either QI or PI> but never
the two of them simultaneously; the same holds for Q2 and P2. From this point of
view the EPR assumption about elements of reality becomes useless: now it can
only lead to the conclusion that an element of reality is associated with a
concretely performed act of measurement, for there is no other reality that one
can speak of. In particular, the EPR conclusion that position and momentum
correspond to two simultaneously existing elements of reality appears totally
unjustified (Bohr says that it contains "an essential ambiguity"), because one can
never perform simultaneous measurements of position and momentum.

Einstein, Podolsky, and Rosen'! anticipated the possibility of such a
refutation and found it unacceptable:
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One could object to this conclusion on the grounds that our criterion of reality is not
sufficiently restrictive. Indeed, one would not arrive at our conclusion if one insisted
that one or more physical quantities can be regarded as simultaneous elements of
reality only when they can besimultaneously measured or predicted. On this point of
view, since either one or the other, but not both simultaneously, of the quantities P and
Q can bepredicted, they are not simultaneously real. This makes the reality ofP and Q
depend upon the process of measurement carried out on the first system, which does
not disturb the second system in any way. No reasonable definition of reality could be
expected to do this.

The foregoing considerations apply to any two noncommuting operators .
Consider, for instance, a spin-! particle and its spin-component operators Sx, Sy,
and Sz. Any two of them do not commute, which expresses the incompatibility of
the corresponding observables . Consider an electron in the spin state

with ICl12 + IC212 = I. If the observable associated with Sz is measured, there can
be only the two outcomes

S =±~
z 2

with respective probabilities ICl12 and IC212 . The spin part of the state vector after
measurement becomes an eigenvector of Sz; that is,

(~) or (~)

In either case the S, component is totally unknown because its eigenstates

(10)

can be written as superpositions of the states (10) with coefficients of equal
modulus. Bohr would say that the implementation of the reality of S, has made S,
completely undetermined-not just disturbed and unknown, but undetermined in
some ontological sense. Likewise S, can become known, but then Sz becomes
necessarily completely unknown. One can thus say, with Bohr, that S, and S, are
complementary aspects of reality; either S, is real, or Sz is real, never both at the
same time.
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Schrodinger,(3) in 1935, considered a wave function [like (8)] satisfying the
two eigenvalue equations

QW(XI ' X2) = qoW(xto X2)

PW(Xl ' X2) =POW(XI' X2)
(II)

where Q = Qa - Q~ and P = Pa +P~ [the notation is the same as in the first
section: see Eq. (7)], and showed that to every Hermitian operator F(Qa' Pa) of
the first particle of an EPR pair there corresponds another Hermitian operator
G(Q~, P~) for the second particle, such that

[F(Qa'Pa) - G(Q~, P~)]W(XI ' X2) = 0 (12)

Thus W(XI ' X2) is an eigenfunction ofF - G with eigenvalue zero. Measurements
ofF on IX and of G on pmust therefore give equal results if IX and pare described

by W(XI' X2)'
To prove Schrodinger's theorem, take the operator

Fmn(Qa' Pa) = f!:.~ + h.c.

with m and n integers, and assume that it corresponds to

Gmn(Q~ , P~) = (Q~ + qot(Po - P~t + h.c.

which can also be written

(13)

by definition of Q and P.
Hence when Gmn is applied to W, the factor (Po +Pa - Pt becomes P~

because of (11) . Since Pa obviously commutes with

Q~ + qo = Qa - Q + qo

one can commute P~ to the extreme left of Gmn' On the right there remains a
factor Qa - Q + qo which, applied to W(XI , X2) , gives e:.. One thus obtains

GmnW(Xl' X2) = [~f!:. +h.c,]W(xl' x2)

The right-hand side coincides with FmnW(XI,X2) and thus (12) holds for the
operator (13) .

This can obviously be generalized to functions of the type

F(Qa' Pa) = L cmnf!:.~ + h.c. (14)
mn

where the cmn's are numerical coefficients. There is thus a wide class ofoperators,
containing infinitely many terms, that satisfy SchrOdinger's theorem: in practice,
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every analytic function F(Q<:1.' P<:1.) can be developed as in (14) and must therefore
satisfy Schrodingers theorem.

In general, two such operators F1(Q<:1.' P<:1.) and F2(Q<:1.' P<:1.) [and their
corresponding operators for ~: G1(Q~ , P~) and G2(Q~, P~)] do not commute
with one another. Still, since by Schrodingers theorem the measurements of an F
operator and of its corresponding G operator must in all cases give equal results,
a measurement ofF on a.steers ~ into an eigenstate of G. Schrodinger concludes:

It is ratherdiscomforting that the theoryshouldallowa systemto be steeredor piloted
into one or the other type of state at the experimenter's mercyin spite of his havingno
access to it.

This problem will be reformulated for the dichotomic observables of spin-t
systems in Section 2.3.2.

1.4. FURRY'S HYPOTHESIS

If the states of particle a.are described by vectors belonging to Hilbert space
£,<:1., and those of particle ~ by vectors in £'~, the states of the composite system
6 = (c, ~) will be represented by vectors in £' == £,<:1. ® £'~. The tensor product
£' is not the same as the Cartesian product £,<:1. x £'~, whose elements are all
products I"'}Irp) of a vector ,"') in £,<:1. and a vector l<p) in £'~. Quantum
mechanics is a linear theory whose states can be superposed to form new states;
the sum of products will not always be another product. The linear space £', on
the other hand, includes all superpositions of products . If the sets {I"'i) } c £,<:1.
and {I<pj)} C £'~ are complete and orthonormal, the set of products l"'i)I<p) will
form a basis in £', so any linear combination

(IS)

with complex coefficients cij represents a possible description of 6. The
coefficients {cij}' being totally arbitrary, will not necessarily be products of the
form cij = aibj' Indeed, if they were, Ill) could be written as the product

~aibjl"'i)I<P) = (~ail"'i)) (;= b)<P)) E£'<:1. x £'~ (16)

Only if a vector is a product can a state vector be assigned to either system. So the
linearity of £' means that the particles of 6 may not have a state. Since the state
vector is the only link between the quantum-mechanical formalism and micro
physical reality, quantum theory does not ascribe any separate reality to the
objects a.and ~ whose complex (a., ~) is described by a state vector that is not a
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product. An embryo of the EPR paradox is already visible in this strange fact.
More will be said about this in Section 2.3.1.

A general discussion of the EPR paradox was given by Furry(4,5) shortly
after the publication of the EPR paper. His starting point was a theorem proved by
von Neumann according to which the state vector (15) can always be given the
'polar' decomposition

111) = L cdcr;) It;)
i

(17)

if the complete orthonormal sets (lcr;)} C yt''I and (It ;)} C yt'P are suitably
chosen. If 111) is a product, there will only be one term in the sum (17), and all the
coefficients but one will vanish. Assume instead that two or more do not vanish,
so it is impossible to write 111) as a product. Then construct the self-adjoint
operators

A = L adcr;) (cr;1
;

B = L b)t)(t)
j

(18)

which, for simplicity, shall be assumed maximal. In other words, the a;'s are all
different and so are the b/s. The polar form correlates the two bases, and the
maximality of A and B extends the correspondence to the sets of eigenvalues . If
C == A 18) B commutes with the Hamiltonian H of the composite system e, time
evolution will preserve the polar form

U(I)lll) == 111(1») = L c;(t)lcr;) It;)
;

with the same bases and will only affect the coefficients c;(t). Otherwise, to
maintain the polar form, the bases will have to rotate as well, and the operators
A(t) and B(t) will change correspondingly (even if they keep the same eigen
values). Now provided C and H commute, if a measurement ofA on the r:t. particle
yields the eigenvalue ai , a measurement of the observable represented by B at any
other time would necessarily yield bk • Otherwise, if C and H do not commute, the
two measurements have to be made at the same time to be correlated.

One can say that the eigenvalue bk corresponding to the measured eigen
value ak was predetermined, since the two subsystems can be very far apart.
Quantum theory has a precise way to describe the state of an object for which the
result of a measurement is known a priori: It attributes as state vector the
eigenvector corresponding to the known value of the considered physical
quantity.

Given the polar form of 111(1»), the state of pmust have been Itk) before ak

was revealed. Given the predicted correlation of values for the observables A and
B, one concludes that the state vector for (n, P) must have been Icrk}ltk} in the
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first place. Repeating the previous argument for a statistical ensemble of pairs (ex,
~), one concludes that the state vectors actually were

ITlI} = IO'I}ltI}

ITl2} = IO'2}1t2}

in IC112% of the cases

in IC212% of the cases
(19)

ITlk} = IO'k}ltk} in ICkI2% of the cases

Schrodingerv" suggested that the mixture (19) may eventually become a
better description of the state once described by ITI}.

. . . (T]he paradox could be avoided by a very simple assumption, namely if the
situation after separating were described by the expansion

'I'(x, Y) = L Qkgk(x}fk(X),
k

but with the additional statement that the knowledge of the phase relations between the
complex constants Qk has been entirely lost in consequence of the process of
separation. This would mean that not only the parts, but the whole system, would be
in the situation of a mixture, not of a pure state.

Now (17) and (19) are obviously different mathematical descriptions of the
ensemble. Could they nevertheless be equivalent descriptions for all practical
purposes? Not even that, as Furry showed.

An elegant way to express the statistical distinguishability between super
positions and mixtures of products was found by Fortunato.i" Consider the
projection operator

(20)

which is Hermitian and can be assumed to correspond to an observable. Its
expectation value over the state (17) is obviously unity:

(21)

The expectation value of the same operator over the mixture (19) is instead

(PTJ) = :Llcl(O'/tjIPTJIO'j'tj}
j

Since the expectation

it follows that

(22)
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(24)

But the sum ofthe fourth powers of the moduli ofnumbers whose squared moduli
add up to I will certainly be less than I, if there are at least two numbers different
from zero. The latter condition is, however, precisely that of having a state vector
of the second type . Therefore, the observable corresponding to PT] has an
expectation value equal to I [less than I] over the state vector of the second
type Ill) [over the mixture of state vectors of the first type (19)].

1.5. BOHM'S SIMPLIFICATION OFTHE PARADOX

Let a physical system E be given (atom, molecule, .. . ) decaying into two
spin-! "particles" ex and ~. Let uQ( +) and uQ( -) be eigenvectors corresponding
to the eigenvalues +1 and -1, respectively, of the Pauli matrix 0'3(ex) represent
ing the third component of the spin angular momentum for ex, and let u~(+) and
u~(-) be the corresponding eigenvectors of the Pauli matrix 0'3(~) for ~. The only
factorizable spin states for (ex, ~) pairs one can construct with these four spinors
are

where the first one applies when the spin vectors ofboth particles ex and ~ point in
the positive z-direction, and so on.

There are physical situations in which the spin state vector for (ex, ~) must be
the "singlet" state vector 110 given by

1 .
110 = J2[uQ(+)u~(-) - uQ(-)u~(+)]

Four important properties of 110 are used in Bohm's(8) version of the EPR
paradox:

(PI) It is not a factorizable state .
(P2) It predicts the result zero for a measurement of the total squared spin of

particles ex and ~.

(P3) It is rotationally invariant.
(P4) It predicts opposite results for measurements of the components along

nof the spins of particles ex and ~, nbeing an arbitrary unit vector.

Property (P I) is not difficult to prove, since the most general spin state for
ex is

(25)
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where a and b are constants. Similarly, the most general spin state for ~ is

Up = cUp(+) + dup(-) (26)

where c and d are other constants. Obviously the most general factorizable spin
state for the combined system is

Ua. Up = acua.(+ )up(+) + adua.(+ )up(-)

+ bcua.(-)up(+) +bdua.(-)up(-) (27)

Now, since ua.(+ )up(+) does not figure in 110, Ua. Up can be equal to 110 only if
ac = 0. Thus a = 0, which implies that ua.(+)up(-) also disappears from Ua. Up ,
and/or c = 0, which implies that ua.(- )up(+) disappears. It is therefore impos
sible, by any choice of Ua. and Up, to satisfy 110 = Ua.Up,

As for property (P2), it can be verified by introducing the total squared spin
operator, defined, apart from a proportionality factor of 11 2/4, by

1;2 = [(Jl(ex) + (Jl(~)f + [(J2(ex) + (J2(~)f + [(J3(ex) + (J3(~)f

=6fa. ~ fp+ 2[(J1(ex) ~ (J1(B) + (J2(ex) ~ (J2(~) + (J3(ex) ~ (J3(~)] (28)

where fa. and fp are the unit operators in the spin spaces of ex and ~, respectively.
One can easily check that

(29)

whence it follows that a measurement of the observable corresponding to L 2 on a
pair described by the state 110 will certainly give the result zero.

The third fundamental property of 110 (rotational invariance) can be proved
by introducing the new vectors ua.(n±)and up(n±), which denote eigenvectors of
u(ex) . 0 and u(~) . 0, respectively (0 being an arbitrary unit vector), and showing
that 110 transforms into

(30)

which has the same structure as (24) with different states.
As for property (P4), it can be checked that 110 is an eigenstate of the 0

component of the total spin operator with eigenvalue zero; that is,

[u(ex) . 0 + u(~) . 0]110 =° (31)

From the physical interpretation of eigenvalue relations it then follows that
measurements of the 0 components of the spins of ex and ~ must always give
opposite results .
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Another important state for the discussion of the EPR paradox is the
"triplet" state, given by

(32)

One can show that 111 shares with 110 properties (P I) and (P4), but not (P3);
it is not rotationally invariant. Moreover, in place of (P2), 111 has the following
property: Any measurement of the total squared spin of the two particles
described by 111 will give the result 2fj2 (spin 1).

One has

1
ua(+)up(-} = .j2(110 + 111)

1
ua(-)up(+) = .j2(110 -111)

(33)

as can be proved simply by adding and subtracting (24) and (32). Furthermore, on
invoking the quantum-mechanical interpretation of superpositions, one sees that
measurements of the total squared spin on a set of (o, ~) pairs described as a
mixture ofthe factorizable state vectors (33) will produce with equal probability
the results 0 and 2fj2.

This large observable difference between an ensemble which is an arbitrary
mixture of the states (33) and an ensemble whose elements are all described by 110
is the basis of the Bohm formulation of the paradox. This formulation has several
important advantages over the original one. First, it deals with dichotomic
observables and therefore allows for a sharper definition of the results . Second,
it allows the introduction of time, which figures only in the space-dependent part
of the wave function, while the spin part is in most cases time independent.
Therefore the singlet state is, as it were, stable, while the original wave function
(8}-(9) introduced by Einstein, Podolsky and Rosen holds only at a particular
time and blows up immediately after. The third advantage of the Bohm
formulation is that it allows one to deal with clearly separated objects (in
space), while the wave function (8), based on plane waves, described the two
correlated objects as present, with constant probability, in all points of space.

In order to establish the EPR paradox in conceptually clear conditions,
consider only (o, ~) pairs with the wave function

(34)

where 110 is the singlet state (24) and "'a (xl ), "'p(X2) are the space parts
assumed factorizable-of the wave functions for a. and ~, respectively. Suppose
furthermore that "'a(xl) is a Gaussian function with modulus appreciably different
from zero only in a region R 1 ofwidth Ll i centered around the point x.j, Similarly,
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let "'p(X2) be a Gaussian function localized in the region R2 of width ~2 centered
around X20' The condition

(35)

will be considered sufficient for the separability of systems r:t. and ~. If particles r:t.

and ~ are supposed to move to the left and to the right, respectively, so that the
distance between the centers of the two wave packets increases linearly with time,
it is not difficult to show that Schrodingers equation allows situations in which
the condition for separability does not deteriorate with time. One can thus say that
r:t. and ~ are located within two small regions RI and R2, respectively, very far
from one another so that all mutual interactions (gravitational, electromagnetic,
strong and weak) are known to be very small. In such conditions it is natural to
conclude that a measurement performed on r:t. does not give rise to any
modification of the physical properties of ~, and vice versa. The presence of
110 in (34) leads instead to paradoxical conclusions.

The EPR reasoning is as follows. Consider a large set E of (o, ~) pairs in the
state (34). Measure 0'3(r:t.) at time to on all r:t.'s of a subset EI of E. If +I (-I) is
found, a future (t > to)measurement of0'3(~) will certainly give -I (+1). Using
the EPR reality criterion, one can assign to the p's of E I an element of reality Al
(A2) fixing a priori the result - I (+ I) of the 0'3 (~) measurement.

But quantum mechanics treats an object ~ with predetermined value of
0'3(~) by assigning it the state up(-) [up(+)]; this is the completeness assump
tion. The strict correlation (P4), applied to the z-axis, implies then, even for
t < to, that the ensemble EI had to be described in spin space by the mixture (33).
Excluding that Al (A2) is created at a distance by the measurement of 0'3(r:t.), it
must be concluded that Al (A2) actually belongs to all p's of E. Applying
completeness once more, one again concludes that the mixture (33) applies to
all pairs of E. But this contradicts the description (34) at the empirical level, as
was shown. One therefore reaches an absurd conclusion (EPR paradox).

1.6. BOHM-AHARONOV AND THE EXFERIMENTAL ISSUE

In 1936 it was clear that the EPR paradox had brought out the existence of a
striking

. . . disagreement between the results of quantum-mechanical calculations and those to
be expected on the assumption that a system once freed from dynamical interference
can be regarded as possessing independently real properties.(4)

This conclusion is very difficult to accept for some people and can lead to the
idea that something must be wrong with the existing quantum theory. Even
Einstein entertained such a view:
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... Einstein has (in private communication) actually proposed such an idea; namely,
that the current formulation of the many-body problem in quantum mechanics may
break down when particles are far enough apart.(9 )
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(36)

(38)

The first examination of a possible breakdown of quantum theory (with
immediately negative conclusions) was made by Bohm and Aharonov-" in
1957. They considered the annihilation of a positron-electron pair into two
energetic photons (gamma rays) and showed that the quantum state produced is

10-) = Ixa ) IY~) - lYa)lx~)

../2
that is, the zero-angular-momentum negative-parity state, where x and y denote
the directions of linear polarization of photon \I.. and photon p. The latter state,
like the singlet state of two spin-! particles considered earlier, is rotationally
invariant. In practice this means that each photon is always found in a state of
linear polarization orthogonal to that of the other, regardless of the choice of axes
with respect to which the state of polarization is expressed . Bohm and Aharonov
calculated the ratio R = I'Iff2' where F 1 is the rate of double scattering of the
two photons through a fixed angle e, when the planes 1t( and 1t2 formed by the
lines of motion of the first and second photons (after scattering) with their
common original direction of motion are perpendicular; I'2 is the same rate when
the planes 1t( and 1t2 are parallel.

The value of R predicted by the 10-) state is

(y _ 2 sin2 e)2 + y2
R = 2y(y _ 2 sin2 9) (37)

where

kO k
y=-+-

k ko

Here ko is the wave number of the incident photon, and k is that of the final
photon. Bohm and Aharonov considered an angle of 82° for which the ratio ko/k
can easily be calculated from Compton scattering kinematics , and obtained
R= 2.85. This figure could not be compared directly with the experiment of
Wu and Shaknov'l'" because photons were detected with an angular spread
around the ideal value of 82°. Instead, to such a concrete situation the prediction
R =2.00 applied, obtained with a suitable angular average of (37), which agrees
very well with the experimental result R =2.04 ± 0.08.

Bohm and Aharonov also showed that the hypothesis ofa breakdown ofthe
10-) state vector with the increasingdistance between the two photons and ofits
substitution with mixtures offactorizable vectors led necessarily to considerably
smaller values ofR, always satisfying R::: 1.5. These results show that Wu and
Shaknov's experiment is explained adequately by existing quantum theory, which
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implies distant correlations of the type leading to the EPR paradox, but not by any
approach, such as Furry 's hypothesis, implying a simple-minded breakdown of
the quantum theory that could avoid the paradox .

It would, however, not be correct to conclude that this experimental evidence
constitutes an argument against local realism, since there are well-known local
models capable of reproducing quantum-mechanical predictions for the experi
ments on double rescattering following electron-positron annihilation into two
gamma rays. One such model was proposed by Kasday," I) Suppose there are two
"hidden" vectors Xl and X2 associated with photon r:J. and photon ~, respectively,
and let the photons ultimately scatter in the directions of these vectors. Then
simply give XI and X2 the same probability distribution p(X(, X2) as that of the
momenta k( and k2 of the scattered photons :

where H(k( , k2) is the probability distribution of the momenta k l and k2 of the
scattered photons, as predicted by quantum theory. The assumption is clearly that
the photons have "decided in advance," at the time of annihilation, in which
direction they ultimately scatter. The model is local; changing the position of
"detector I" does not affect parameter X2, for example, and therefore it does not
change the response of "detector 2." Furthermore, the model reproduces the
results of all measurements that can be made on the scattered photons.

Given the conclusive evidence found by Bohm and Aharonov against a
simple-minded breakdown of quantum theory, it is surprising that several authors
rediscovered their idea long after it had been discarded by its proponents. Thus,
Jauch«(2) developed an ambitious approach to quantum theory based on an
"algebra of propositions," where he defined as "mixtures of the 2nd kind" the
quantum-mechanical description of EPR pairs based on nonfactorizable state
vectors, that is, the states that lead to the EPR paradox, and concluded that
"mixtures of the 2nd kind do not exist."

1.7. EPR CORRELATIONS FOR PAIRS OF NEUTRAL KAONS

A very interesting two-state system belonging to the domain of elementary
particles is the meson called neutral kaon: symbol ~, mass about 494 MeV je2

,

spin zero. Neutral kaon pairs can be generated in the decay of <p mesons at rest,
e.g., produced in electron-positron collisions :



1.7. EPR CORRELATIONS FOR PAIRS OFNEUTRAL KAONS 19

Given the quantum numbers of <l> and the usual conservation laws of angular
momentum 1, parity P, and charge conjugation C in its (strong) decay, the final
neutral kaons are described quantum mechanically by the ]pc = 1- - state vector

I ° - 0 - 0 ° II'll} = J2 {1K }alK }b - IK }alK h } = J2{IKs}aIKL}b - IKL}aIKs}b} (39)

where a (left) and b (right) denote the opposite directions of motion of the kaons,
IKo} and IKo} are the well-known state vectors for strangeness + I and - I,
respectively, and IKs} and IKL} are the state vectors for short- and long-lived
kaons, respectively. The latter are eigenvectors of the CP operator. Kaon pairs in
the state (39) are also known to be produced in p +p annihilations at rest from
the prevalent 3SI state, namely in the reaction p + p -+ KO+ K O.

Time evolution is obtained by applying a time evolution operator, which is
taken to be nonunitary, in order to reproduce the exponential decrease of kaonic
wave functions due to spontaneous disintegrations. One has

IKs(t)} = IKs}exp( -CJ.st) ,

where t is the particle proper time and

I + .CJ.s = 'iYs lms,

(40)

(41)

The small effect of CP nonconservation (unknown in 1961) is neglected in (40)
and the CP = ± I eigenstates are identified with the short- and long-living kaon,
respectively. In Eq. (41), Ys and ms (YL and mL) denote the decay rate and mass,
respectively, of the S (L) meson. Units fz = c = I have been adopted . The time
evolution operator for the state vector (39) is the product of the time evolutions
for the individual kaons, so at proper times ta and tb one has

I
IIjI(ta' tb)} = J2{IKs}aIKL)b exp(- CJ.sta - CJ.Ltb) -IKL)aIKs)b exp(-CJ.Lta - CJ.Stb)}

(42)

The difference between the two exponential factors in (42) generates ~KO
and KOKo components, which are absent at time zero, in (39). For example , the
probability of a double KO observation at times ta and tb is given by

pQM[K(ta); K(tb)] =k[ES(ta)EL(tb)+ EL(ta)ES(tb)

- 2JEs(ta)EL(tb)EL(ta)Es(tb) cos f1m(ta - tb)] (43)

where

(44)

and f1m = mL - ms is the KL - Ks mass difference.
A remarkable consequence of the state vector (42) was observed by

Lipkin(\3): the observation of a particular decay mode, i.e., 1t+1C , for one kaon
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implies that the other kaon is forbidden to decay, at equal proper time, in this
mode. In fact the relevant transition matrix element for ta = tb = t is
(DaDbITI\jI(t, t)} , if

(x=a,b) (45)

A straightforward calculation based on (42) and using the transition matrix T
gives

(DaDbITI\jI(t , t)} = ~{(DITIKs}a(DITIKL}b - (DITIKL}a(DITIKs}b}e-(elS+elL)1

=0 ~

The vanishing of (46) is due to space isotropy because if all directions in space
are equivalent, one must have

and (47)

One can show that the previous selection rule applies even if CP violation is taken
into account. The main technical reason behind this generalization is that CP
violation modifies the state vector (42) only in the multiplying factor, while the
term in braces remains the same. The decay of both kaons into two neutral pions
is similarly forbidden.

The essential physical point of these phenomena can be summarized as
follows : The observation of a particular decay mode ID) at time t in the positive
(a) direction imposes constraints on the kaon beam observed in coincidence in the
negative (b) direction. These constraints force IK}b to be a definite linear
combination of IKs} and IKL } . It is just that linear combination which at the
same t is forbidden to decay into the mode ID}.

Lipkin described this situation as "the Einstein-Podolsky-Rosen effect."
This terminology is not fully adequate, however, because the mere anticorrelation
at equal proper times has nothing paradoxical and can be reproduced by local
realistic models . The whole matter will be taken up in detail in Chapter 4.

1.8. BELL'S INEQUALITY

Again consider an ensemble formed by a very large number N of decays
e -+ ex + ~ and suppose that the observer Del measures on ex the dichotomic
observable A(a), while in a distant region of space a second observer measures on
~ another dichotomic observable B(b).

The observables A(a) and B(b) have been taken to depend on the arguments
a and b, respectively, which are assumed to be experimental parameters, fixed in
the structure of the apparatuses in any given experiment, but possibly variable
over different experiments. Examples of such dichotomic observables are those
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(48)

represented by the spin matrices rr(«) . aand a(~) . b, where the experimental
parameters are the unit vectors i and b. They could be fixed experimentally, for
example, by the directions of the inhomogeneous magnetic fields of two Stem
Gerlach apparatuses .

In any event, when measurements of such observables are made on all the N
pairs of the given ensemble , Oa. will obtain a set of results {AI ' A2, .. . , AN} while
O~ will collect a similar set {BI , B2, . . • ,BN }, all relative to fixed values of the
parameters a and b. The results of the two sets are correlated in the sense that A I

and B I pertain to particles ex and ~, respectively, arising from the first decay; A2

and B2 are similarly associated with the second decay, and so on. By definition,
these results in every case are equal to ± 1.

The correlation function P(a, b) of the results A; and B; is defined as the
average product of the results obtained by Oa. and O~:

1 N
P(a, b) = - L: A;B;

N ;=I

Since every product A;B; is equal .to ±1, it follows that

-l::::P(a,b)::::+l (49)

The quantum-mechanical correlation function in the case of singlet state 110
given by (24) is equal to

P(i, b) = (11ola(ex) . a® a(~) . bl11o) = -a ·b (50)

This result is simple and elegant, but incompatible with local realism, as shall
soon be seen.

Now define the quantity

L1 =P(i, b) - p(i, b') + P(i' , b) - P(i', b') (51)

Consider two orthogonal unit vectors i and i' associated with particle cx and two
orthogonal unit vectors band b' associated with particle ~, and suppose that their
orientation is such that they can be reached by clockwise rotations of rc/4 in the
order a, b, i', b' (Fig. 1.4). One can then easily see that substituting (50) in (51)
leads to

1L11 = la .b- i . b' + i ' . b+ a' .b'l = 2./2

It can, moreover, be shown that 2.,fi is the maximum value of 1L11 for all possible
orientations of i , i ' , b , b'. This result is of great interest, because local realism
allows L1 to have a maximum value of 2. The result L1 :::: 2 is Bells inequality. It
has been called "the most profound discovery of science.,,(14)
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FIGUR~ 1.4. The.spin compo'.!ents of the ~pin-t particles(ex, 13) arejointly measured alongdirections
(I) (a, b), (2) (a, b'), (3) (a' , b), (4) (a', b'), in four different subsetsof (ex, 13) pairs. The quantum
mechanical prediction (50) for singletstate leads to the maximum violationof Bell's inequality for the
relative positions of the unit vectors a, a', b, and b' shown.

In a theory developed according to the EPR reality criterion, there are
elements of reality A that fix all observables. In general they can be expected to
vary, with density peA), over a set A. Of course,

Lo. peA) = I (52)

The role of the new variable A is that of fixing the values of the dichotomic
observables, for example,

a(cx) . a-+ A(a, A), a(~) . b -+ B(b, A) (53)

where the discontinuous functions A(a, A) and B(b, A) can assume only the values
±l. The correlation function as defined in (48) (average product of the two
observables) can obviously be written

pea, b) = Jo. p(A)A(a, A)B(b, A) (54)

This is a local expression, in the sense that neither A depends on b nor B on a.
It is easy to show that

IP(a,b) - Pea, b')1 s Jdt: p(A)IB(b, A) - B(b', A)I (55)
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since IA(a, 1..)1 = 1, and that

IP(a', b) + P(a', b')1 s Jo: p(A)IB(b, A) + B(b', 1..)1 (56)

By adding (55) and (56) and using

IB(b, A) - B(b', 1..)1 + IB(b, A) + B(b', 1..)1 = 2

which is a consequence of IB(b, 1..)1 = IB(b', 1..)1 = 1, one obtains from (52) the
inequality

I~I ::: IP(a, b) - P(a, b')1 + IP(a', b) + P(a' , b')1 s 2 (57)

This is Bell's inequality in its 1970 form.l!5) which is more general than its
original 1965 form .(16)

1.9. ADDITIONAL ASSUMPTION AND STRONG INEQUALITIES

A practical way of testing experimentally the validity in nature of Bell's
inequality could be the following: A source is built in such a way that the decays
E --+ rt. + ~ lead to the emission of the pair only when the object rt. (B) flies to the
left (to the right) where a two-channel analyzing apparatus can transmit it or
reflect it at 90° depending on its physical properties. The dichotomic choice
forced in this way upon the atomic objects can then be used for defining Bell's
dichotomic observables, by saying that A(a) = ±I [B(b) = ±I], depending on
the channel, transmission or reflection, chosen by the object rt. [~] .

In 1969, Clauser, Home, Shimony, and Holt(l7) (CHSH) suggested the use
of pairs of optical photons emitted by atomic cascades. For such photons they
assumed that the binary choice was between transmission and absorption in a
polarizer. For every choice of the polarizer's orientations a and b, they introduced
four probabilities, T(a±, b±), where, for instance, T(a+, b-) is the probability
that observer 0,,- finds A(a) = +1 (photon rt. transmitted through polarizer with
axis a) and that 0(3finds B(b) = -1 (photon ~ absorbed by polarizer with axis b)
(Fig . 1.5). The correlation function can then be written

P(a, b) = T(a+ , b+) - T(a+, b-) - T(a-, b+) + T(a- , b-) (58)

since the product of the results obtained by 0,,-and 0(3 is +1 [- 1] in the cases of
T(a+,b+) and T(a-,b-) [in the cases of T(a-,b+) and T(a+,b-)]. Of
course,

T(a+, b+) + T(a+ , b-) + T(a-, b+) + T(a-, b-) = 1 (59)
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. - -0
a

o-~~

f3
CPM2 (r-

FIGURE 1.5. The EPRexperiment proposed in 1969 by Clauser, Home, Shimony, and Holt,(l7) An
atomic source emits a pair of photons ex and ~ that travel in opposite directionsand impinge on two
polarizerswith opticalaxesaand b. If they get throughthe polarizers, theyenter two photomultipliers
PMl and PM2.

Considering further the case in which the second polarizer has been removed
(denoted by (0), one will obviously get

T(a+, b+) + T(a+, b-) = T(a+ , (0) (60)

where T(a+, (0) is the joint probability for photon Ct to be transmitted through
the polarizer with axis a and photon Bto be transmitted through the vacuum
(transmission through the vacuum, in the absence of a polarizer, is certain to take
place); T(00, b+) is defined analogously. If, instead, the first polarizer has been
removed, one similarly gets

T(a+, b+) + T(a- , b+) = T(oo, b+) (61)

Finally, if both polarizers have been removed, both photons will certainly be
transmitted, so

T(oo, (0) = 1 (62)

Using Eqs. (59) to (61), it is a simple matter to show that the correlation function
can be written as

Pia, b) = 4T(a+, b+) - 2T(a+ , (0) - 2T(00, b+) + 1 (63)

In the latter expression only cases of double transmission appear, which are
nearer to experimental observation, since it is impossible to detect the absorption
of a photon in a polarizer. However at this point one must face a very important
problem: Can one really measure the right-hand side of Eq. (63) with an error,
say, of a few percent? Obviously, the only way to know that a photon has been
transmitted through a polarizer is to detect its presence beyond the instrument, but
the problem is that photon detectors have a low efficiency, typically 10% to 20%.
This means that one cannot really measure a double-transmission probability, but
only a joint probability for double transmission and double detection of the two
photons. This is not what figures in Eq. (63)!

One could attempt to redefine the correlation function by using only the
measurable joint probabilities for transmission and detection. This can certainly
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be done, but the trouble is that the values of Pta , b) tum out to be of the order of
10- 2, which is far too small to lead to a violation of Bell's inequality.

This problem has traditionally been "solved" by means of ad hoc assump
tions concerning the nature of the transmission-detection process. The additional
assumption made by CHSH is the following:

Given that a pair of photons emerges from two regions of space where two polarizers
can be located, the probability of their joint detection from two photomultipliers is
independent of the presence and of the orientation of the polarizers.

Calling roo the double-detection probability dealt with in the previous assumption
and denoting by ro the joint probability for transmission and detection of both
photons, one can translate the previous assumption into the following relations:

ro(a, b) = rooT(a+, b+)

ro(a, 00) = rooT(a+, 00)

ro(oo, b) = rooT(oo, b+)

ro(oo, 00) = rooT(oo, 00)

(64)

where ro(a, b) is the joint probability in the case of polarizers with orientations a
and b, ro(a, 00) is the joint probability with the second polarizer removed and the
first one oriented along a, and so on.

The rates of double detections depend, of course, on the number No of
photon pairs entering, per second, into the right solid angles defined by the optical
apparatuses . Using R to denote rates, one has

R(a, b) = Noro(a, b)

R(a, 00) = Nom(a, 00)

R(oo , b) = Noro(oo, b)

Ro = Noroo

(65)

(66)

where R(00, 00) has been called Ro and the meaning of the new symbols is
obvious. If one obtains the T functions from the relations (64) and (65) and
substitutes them in Eq. (63), one gets

( b)
R(a, b) 2R(a, 00) 2R(00,b)

P a, = 4-- - - + I
Ro Ro Ro

Only coincidence rates enter into Eq. (66). By virtue of the CHSH additional
assumption the correlation function has therefore become measurable!

Equation (66) allows Bell's inequality to be transformed into a directly
measurable expression . In fact, inequality (57) is equivalent to

-2:::: P(a, b) - P(a , b') + P(a', b) + P(a' , b') :::: +2 (67)
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Substituting into the previous inequalities the expressions of the type (66) for the
four correlation functions, one obtains

-1 < R(a, b) _ R(a , b') + R(a', b) + R(a', b') _ R(a' , (0) _ R(oo, b) < 0 (68)
- Ro Ro Ro Ro Ro Ro -

Only coincidence rates enter the previous inequalities, which can therefore be
checked experimentally.

A useful simplification is obtained if two qualitative predictions of quantum
theory, which have nothing paradoxical and which can be checked directly in
experiments, are accepted:

1. The prediction that R( == R(a', (0) does not depend on a' and that
R2 == R(oo , b) does not depend on b.

2. The prediction that every R function should depend only on the relative
angle between the polarizers' axes. For example, R(a, b) = R(a - b).

Adopting these simplifications, one gets

-1 < R(a - b) _ R(a - b') +R(a' - b) +R(a' - b') _ R1 _ R2 < 0 (69)
- Ro Ro Ro Ro Ro Ro-

The axes of the polarizers can be chosen in such a way that

a - b = a' - b = a' - b' = <j>, a - b' = 3<j> (70)

Then from Eq. (69) it follows that

-1 < 3R(<j» ~ R(3<j» _ R) +R2 < 0 (71)
-Ro Ro Ro -

Considering the previous inequalities for <j> =22to and for <j> =67t o, for which
the maximal quantum-mechanical violation of (71) takes place, one can easily
obtain the so-called Freedman inequality:

IR(22!O) R(67!O)1 1o= 2 - 2 - - < 0 (72)I Ro Ro 4-

which does not involve R) or R2•

We repeat that all the new results deduced, starting from Eq. (66) and ending
with inequality (72), have become possible only because the CHSH assumption
has been made. It is therefore not correct to confuse Bell's original inequality
with the much stronger inequalities now deduced. In the future the following
definitions will be adopted:

1. Weak inequality: An inequality deduced from the sole assumption of
local realism and violated by quantum mechanics in the case of nearly
perfect instruments.



1.10. WIGNER'S PROOF OF BELL'S INEQUALITY 27

2. Strong inequality: An inequality deduced from local realism and from
ad hoc additional assumptions, such as the CHSH hypothesis, or other
hypotheses to be seen later, and violated by quantum mechanics in the
case of real instruments.

The difference between these two types of inequalities will be discussed at length
in Chapter 3.

1.10. WIGNER'S PROOF OF BELL'S INEQUALITY

Wigner's 1970 proof l8
) of Bell's inequality will be reviewed in a simpler and

more general form than the original one. Of course, the basic ideas are strictly the
same.

Wigner made two basic assumptions. The first one was that the results of all
conceivable measurements are predetermined (even in the case of incompatible
observables). This realistic standpoint does not contradict Heisenberg's relations
because the latter can be taken simply to mean that a concrete measurement made
on a given object modifies the preset values of other observables of that object,
not compatible with the measured one. But, before the action ofthe instrument, it
is possible that the results of all conceivable measurements are determined.

The second assumption was locality. A measurement made on 0: [~] does not
modify the preset values of the observables B(b), B(b') [A(a), A(a')] of ~ [0:] . If
one writes

A(a) = s ,

B(b) = t,

A(a') = s'

B(b') = t'
(73)

where s, s', t, l' are all equal to ±l, locality means that these four parameters,
preassigned by the realistic assumption , are not modified at a distance by
measurements . Therefore, if A(a) is measured on an 0: particle, for example,
and the value s is found, the preassigned values t and 1', associated with the
correlated ~ particle, are in no way modified.

We are obviously dealing with a realistic and deterministic approach, since
the result of every possible measurement is predetermined by some concrete
properties of the measured objects ("hidden variables"). This does not mean,
however, that an active role of the apparatus is excluded, but only that the
interaction between object and apparatus is driven to a preset outcome ("result of
measurement") by the hidden variables of the object.

As a consequence of these assumptions, the set E of N (0:, ~) pairs splits into
24 subsets with well-defined populations in which the outcome of the four
possible measurements is predetermined. Let E(s, s'; t , t') be a subset of E with
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preset values of the four observables (73), and let n(s, s'; t, t') be its population.
Naturally

I: n(s, s'; t, t') = N (74)

where I: denotes a sum over the 24 different sets of values of the dichotomic
parameters s, s', t, and r,

By virtue of the locality assumption, the concrete performance of the
measurement of A(a), or of A(a'), on the r:J. objects of the subset £1cE does
not in any way modify the preset values ofB(b) and B(b') in that subset. In other
words, there is no action at a distance modifying B(b) and/or B(b') arising from
the measurements of A(a) or A(a') (and vice versa).

The a priori probabilities

( ,. ') _ 1 ( ,. ')pS, s,t,t - Nns,s ,t,t (75)

can therefore be used for the calculation of correlations of concretely performed
experiments. Therefore,

Pta, b) = I: p(s, s'; t, t')st

Pia, b') = I: p(s, s' ; t, t')st'

P(a', b) = I: p(s, s'; t, t')s't

P(a', h') = L p(s, s'; t, (')s'('

(76)

where again I: denotes a sum over the dichotomic variables s, s', t and t. It is
now a simpler matter to show that

IP(a, b) - P(a, b')1 :s I: p(s , s' ; t, t')It - t'l

since lsi = 1. Similarly, from [s'] = 1 it follows that

IP(a' , b) +P(a', b')1 :s I: p(s, s'; t. t')It + t'l

By adding Eqs. (77) and (78) and using the equality

It - t'l + It+ t'l = 2

(77)

(78)

which is a consequence of ItI = It'l = 1, Bell's inequality follows, since Eq. (74)
is equivalent to

I: p(s,s'; t, t') = 1

With Wigner's proof, probabilities entered into the EPR paradox for the first time.
They were, however, deduced from a deterministic background, much in the same
way as was done by Laplace with his formulation of probability calculus.
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One can say that in Wigner's approach the role of the hidden variable f... is
played by the preset values of A(a), A(a') , B(b), B(b'). Remembering (73), it
becomes immediately clear that p(s, S, t , 1') is expected in general to vary if one
or more of the parameters a, a', b, b' are modified. This is a very important feature
of the probabilistic approach based on local realism, which was unfortunately
often forgotten in later developments, based on insufficiently general concepts.
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Chapter 2

Bell's Inequality and Its Elementary
Background

Now that the history of the EPR paradox has been considered, its conceptual
background will be examined. The underlying philosophy is that of local realism,
which, in addition to realism and locality, includes time's arrow. From these
natural and intuitive elements Bell's inequality, briefly encountered in Chapter I,
is rigorously deduced. Of course it is grossly violated by quantum mechanics ,
which is therefore inconsistent with the principles represented in the inequality.

Realism can be opposed to complementarity, according to which quantum
systems can manifest different, incompatible features-like an undulatory or
corpuscular nature-but do not really possess them all at the same time. The
aspect revealed depends on the experiment, and no experiment can implement
complementary characteristics together.

Complementarity can be more naturally applied to single than to composite
systems; to the latter Einstein, Podolsky, and Rosen can apply their reality
criterion, allowing the assignment of elements of reality, which are complemen
tary and hence incompatible according to Bohr, to both subsystems. In fact the
very possibility of deducing Bell's inequality runs against complementarity.

Certain well-known approachesv-" involve "ontological" violations of
Heisenberg's uncertainty relations, which express the limits imposed by comple
mentarity.

2.1. LOCAL REALISM

Local realism is characterized by the following three postulates:

1. There is an objective reality, which exists independently ofobservation.
The moon is there when nobody is looking. An atom continues to exist
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when it is not being observed . This is the spirit of the assumption, whose
"letter" is represented by certain precise criteria of reality, such as the
EPR reality criterion. These criteria are capable of experimental test, once
associated with the following two assumptions .

2. The interaction between two objects can be made arbitrarily small, even
negligible, by increasing their separation. This is the assumption of
locality.

3. Time has a suitably defined "arrow," which means that all physical
propagations go from the past to the future and that, hence, the past
cannot be modified.

The validity of local realism, thus formulated, is strongly supported by current
scientific knowledge. Quantum mechanics, however, is incompatible with it. This
was made clear in 1965 with the violation of Bell's inequality, in which the
assumptions of Einstein's realism are represented, and which can be compared
both with the predictions of quantum mechanics and with experience. Infinitely
many other inequalities have also been discovered, which determine limits that
cannot be deduced from Bell's.

Local realism coincides more or less with Einstein's position. Einstein was
certainly a realist and would have agreed with postulate 1. He neither bothered to
mention action at a distance nor the possibility of influencing the past in the 1935
paper, for such issues had yet to become explicit in quantum mechanics. He no
doubt would have considered both too absurd to be addressed. When he did
appreciate that the possibility of quantum nonlocality could be seriously enter
tained, he wrote: "But on one supposition we should, in my opinion, absolutely
hold fast: the real factual situation of the system 52 is independent of what is done
with the system 5" which is spatially separated from the former."m He could not
"seriously believe in [quantum mechanics] because the theory is incompatible
with the principle that physics is to represent reality in time and space, without
spookish long-distance etTects.,,(4)

2.1.1. The Reality Postulate

The idea that objects exist independently of human beings and their
observations is so obvious that it is more or less accepted by everyone, including
most theoretical physicists. It is, however, sometimes dismissed as being merely
metaphysical and as forming no part of a sensible scientific attitude. It is not
metaphysical, however, for when it is combined with locality and the arrow of
time it has many empirical consequences, which could, in principle, be falsified
by suitable experiments, in particular, those that test Bell-type inequalities with
very accurate instruments.
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Access to the world is given by the senses. One has an awareness of sense
perceptions, so their existence cannot be denied. It can, however, be denied that
there is anything beyond these sense perceptions and that a real external world
produces them. Admittedly the senses give an incomplete and imperfect image of
reality. Any correspondence between sense perceptions and elements of that
reality cannot be strictly unambiguous . There is no reason why human perception
should be able to penetrate reliably the finest details of nature. Different
circumstances can be indistinguishable, and similar circumstances can give rise
to very different perceptions. The instruments that assist observation, similarly,
can introduce distortions and perturbations.

The realist will claim that the intricacies of this relationship between
observation and nature are no reason to abandon a belief in an external reality
altogether, and to claim that things only exist insofar as they are directly observed,
or even that their existence is created by observations in some sense. The realist
can then wonder how to give this view rigor and even empirical substance rather
than leaving it vague and metaphysical. In which situations, he can ask, must the
presence of an external reality be necessarily recognized? Which "elements" of
that reality can be looked for? Which properties of which systems can be
considered undeniably real?

As an example, consider the quantum of nuclear forces, the famous 1t meson
or pion. The mass of the charged pion, known with great accuracy, is
mn = 139.5673 ±0.0007 MeV/c?, or approximately 140 MeV/cz. One can say
that "the mass of the pion is equal to 140 MeV/cz" because measurements
always result in that figure. Therefore, it is assumed that all pions have this mass,
even those whose mass has not been measured . If it were not possible to assume
this, the mass would be literally created by the action of the measuring
instrument , and pions would possess no real property corresponding to the
observed value of the mass. The assumption that measurements also say some
thing about objects that are similar to but distinct from the ones that are directly
examined is commonly made in high-energy experiments, and with great success:
for instance, verifying the validity of conservation laws (energy, momentum). It is
therefore reasonable to assume that there is a reality independent of measure
ments behind the value of 140MeV/ cZ for any pion's mass.

It is, however, best to avoid strong assertions such as "the mass of the pion
really and objectively has a value equal to 140 MeV/cz, even if it is not
measured." This would represent an attitude of naive realism and would be
like saying that the green color of grass is real. Rather, it is known that observed
colors are at least in part appearances and that objective reality is far closer to the
wavelength of the light in question than to the corresponding color sensation.
Hence, it is more accurate to say that "there is something real that corresponds to
the green color of the grass," while it is at least risky, if not downright wrong, to
say that "the grass is really green." For similar reasons it is more correct to assert
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that "there is something real corresponding to the known of value of the mass of
the pion." The same applies to just about any property of matter.

These simple considerations form the basis of the EPR reality criterion.v"

EPR Reality Criterion. If, without in any way disturbing a system, we can
predict with certainty (i.e., with probability equal to unity) the value of a physical
quantity, then there exists an element of physical reality corresponding to this
physical quantity.

The first part of the reality criterion requires that the prediction be made without
disturbing the object in question. It is, for instance, possible to predict the color of
a car without looking at it and, hence, without disturbing it at all. It is also
possible to predict the value of the mass of the next pion crossing a bubble
chamber without interacting with it, and so on. In every case in which the
prediction can be made in this way, the EPR reality criterion assigns to the object
(automobile, pion, . . . ) an element of reality, i.e., something real that does not
necessarily coincide with the observed property but generates it deterministically
when a measurement is made. To the predictable green color of grass there
corresponds, for instance, the reality of a wavelength that generates in our eyes
the sensation of green and, beyond that, the reality of the chemical structure of
chlorophyll that absorbs light of all colors but green.

Let us summarize the principal characteristics of the "element of reality"
that Einstein et al. introduced with their reality criterion:

I. Its existence does not necessarily depend on an act of measurement. This
is consistent with the general hypothesis of realism, which logically
precedes the formulation of a reality criterion by means of which single
pieces of reality can be recognized in specific situations.

2. It is considered the cause of the result exactly predicted by the measure
ment, if measurement is indeed undertaken. Hence realism and causality
are closely connected in the EPR reality criterion.

3. It is also viewed as being determined at least partly by the measured
object and not entirely by the measuring apparatus, which has been tested
and could, in principle, give results that differ from those predicted. If it
can be predicted with certainty that such an apparatus will give a
predetermined result interacting with an object, the decisive factor that
produces the result of measurement can only be in the object.

This third point does not imply that the apparatus does not play the active role in
the measurement process one might expect in quantum physics. Indeed, the EPR
reality criterion is only applicable to those particular situations in which the result
of a measurement can be exactly predicted even before it is performed. These
situations arise when the system is in an eigenstate of the observable in question.
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Consider, for instance, an electron described by the wave function

\jJ = \jJoeip.x/ fi
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which is a monochromatic plane-wave, eigenfunction of the momentum operator.
A measurement of momentum performed on an electron described by \jJ will
necessarily yield the result p; this can be predicted with certainty. Applying the
EPR reality criterion, there must exist an element of reality of the electron
corresponding to the predicted value p. This does not necessarily mean that the
electron has a well-defined momentum equal to p. It is only postulated that the
exactly predictable result of the measurement of the physical quantity known as
momentum, and defined operatively, has a real (but generally unknown) cause. It
remains possible, however, that momentum is a largely conventional entity.

For a realist the EPR reality criterion has a solid conceptual basis. It is,
however, open to two kinds of criticism, which are related. To begin with, its
applicability is rather limited, as it only recognizes as real, in the atomic domain,
what quantum mechanics describes with eigenstates of the measured observable.
Why can one not introduce elements of reality for all situations described, more
generally, using superpositions? Einstein et al. were conscious of this limitation
and wrote that their criterion, "while far from exhausting all possible ways of
recognizing a physical reality, at least provides us with one such way."

The requirement that the physical quantity be predictable with certainty
represents the other weakness of the EPR reality criterion: when can absolute
certainty ever be reached in an actual physical situation? In practice, all kinds of
perturbations , such as the sudden arrival of a cosmic ray, combine to eliminate
real certainty. In 1935 certain predictability appeared to be a consequence of
quantum theory for eigenstates of the measured observable. The situation has,
however, been changed by the theorem ofWigner, Araki, and Yanase,(6-8) which
demonstrated the necessity of imperfect measurements, even in principle, if the
consistency of quantum theory with the known conservation laws (energy,
momentum, angular momentum) is extended to measurement processes .

These two difficulties can be dealt with by means of a probabilistic
generalization of the reality criterion, in which the prediction of a probability
is used to deduce the existence of real physical properties of suitable statistical
ensembles. Such properties are generalizations of "elements of reality" and will
be considered with the probabilistic treatment of the next chapter.

2.1.2. The Locality Postulate

The idea of "locality" is based on the reasonable belief that the intensity of
interaction between objects depends inversely on their separation. If a chair
collapses, a distant chair remains unaffected; if a ship sinks in Rio, there will be
no effect on a ship in Naples; if a star explodes in Andromeda, our sun continues
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to shine just as before; if a person has an accident in Vienna, a relative in London
will not be physically harmed as a consequence; if an electron is observed in a
laboratory, another electron 10 or IOlO m away acquires no new property; and so
forth. Objects may well interact, to some extent, no matter how far apart they are.
This is not being denied. There is always the force of gravity, for instance, which
acts between any two objects and diminishes with the inverse square of the
separation. It tends to zero as that separation tends to infinity, but never vanishes
for any finite distance. Only something much simpler and easily acceptable is
being claimed, namely that at large distances interactions have very small effects,
so small that in practice they can be neglected in normal experiments.

All known interactions tend to zero as the distance between the interacting
objects tends to infinity. Gravitational and electromagnetic forces decrease with
the inverse square of the distance, while strong and weak forces fall off even more
rapidly, in fact exponentially. It was stated that all " known" interactions tend to
zero to distinguish them from certain hypothetical interactions, such as the ones,
whose intensity is assumed to increase with separation, that would bind quarks
together inside nuclear matter. This conjecture is not, however, to be taken too
seriously yet-if ever-because it has the character of an ad hoc hypothesis,
made to explain the failure of all attempts to discover these quarks, which remain
unobserved. Thus, no known interaction really violates the idea of locality as
formulated. Again:

Given two separated objects A and B, the modifications ofA due to anything
that may happen to B (collision, interaction with a third object, disintegration,
measurement , . . . ) can be made arbitrarily small, for any measurable physical
quantity, by increasing their separation.

This locality postulate is clearly of very general validity, and there appears to be
nothing to which it cannot be applied. The formalism of quantum mechanics is
about the only thing that could lead one to question it. Even in this case, however,
one is strongly tempted to believe in its validity because, again, the intensity of
the four fundamental interactions falls off rapidly with distance.

It is often objected, however, that the formalism of quantum mechanics does
not represent a reality in ordinary space, since the Schrodinger equation for two
particles yields a wave that propagates in six-dimensional space (configuration
space). This in fact is the central issue here. Even in classical statistical mechanics
configuration space is often used, but there it represents no more than a useful
simplification, as it is equally possible to describe the configuration in ordinary
three-dimensional space. Such a description is, on the other hand, impossible in
quantum mechanics, since nobody has managed to deduce the Schrodinger
equation in configuration space from the corresponding equation in ordinary
space. It is sometimes believed, therefore, that the abstract spaces used in
quantum mechanics have an irreducible meaning and represent the true atomic
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reality. The notions of spatial proximity and distance may then lose all meaning,
or at least have to be revised radically; and those who embrace locality would
become naive realists who do not understand the subtleties of the quantum
formalism.

But the mathematical apparatus of quantum mechanics, although useful and
accurate in its empirical predictions, has no objective existence outside our
theoretical schemes. Those who support the contrary are naive Platonists,
incapable of understanding the complexity of the relationship between mathe
matical formalism and objective reality. Mathematics is a human construction and
so, therefore, are all the abstract spaces used in quantum mechanics. Ordinary
space-time has instead a more fundamental role, if only because it has imposed
itself on our species for reasons of survival, long before physics was developed.
Whoever does not regard this as being decisive can be asked to provide a solid
scientific reason for the abandonment of space-time. This is a request that
nobody, at least so far, can satisfy, because all the proposals of an extraspatial
physics have their origin in cultural tendencies and philosophical fashions
imported from outside the discipline, without an adequate scientific foundation.
Otherwise why would people like Planck, Einstein, Schrodinger, and de Broglie
have been opposed to the Copenhagen paradigm? And today the discovery of
Bell's theorem has, if anything, aggravated the situation.

2.1.3. The Postulate of Time's Arrow

The third principle that features in an unmetaphysical characterization of
realism is the impossibility of modifying the past. If a rocket is sent toward the
moon, the moon will be reached a few days after the launch. A flash of light
directed at the sun will reach it about 8 min after it was produced on Earth. All the
effects generated by a propagation in space and time make themselves felt after
the beginning of the propagation. Even these assertions can appear to be of
obvious validity to the uninitiated; only those accustomed to extravagant fantasies
of contemporary physics will not be surprised if they are contested. Naturally
time's arrow has yet to be refuted experimentally.

An abandonment of time's arrow has been proposed more than once
recently. Clearly this leads to fantastic scenarios. If propagations from the present
toward the past are indeed possible, the past can be modified through choices and
decisions made in the present. This is clearly commonplace in science fiction,
which may have its appeal, but which should not be embraced for reasons of
cultural or philosophical fashion, and only, if ever, once solid scientific grounds
have made it necessary-that is, if physics is to continue being, as one would
hope, a serious activity that advances by conjecture and refutation. Today, instead,
the dogmatism that once prevailed has been supplanted by total anarchy, in which
it seems that any idea can form the acceptable basis of a scientific development,



38 CHAPTER 2. BELL'S INEQUALITY

irrespective of how well founded it may be. This would be less harmful if it were
just a matter of provisional acceptance, pending experimental and conceptual
clarification. Unfortunately, however, the boundary between the provisional and
the definitive has been blurred, and there are fervent supporters of just about
anything, including the idea of a propagation toward the past.

One of the arguments employed in favor of propagations toward the past is
that antiparticles are to be considered ordinary particles traveling backward in
time. Hence a positron, for instance, would be no more than a normal electron
going from the future toward the past. This opinion is, however, hardly consistent
with the circumstances under which the positron was discovered, as recounted so
clearly by Alvarezv? (Fig. 2.1):

. . . To illustrate the fact that I did not invent these "rules of physics" this morning, let
us recall the single essential ingredient in the discovery of the positron. Most physicists
would say that the discovery of the positron involved the observation that an electron
like track in a magnetic cloud chamber bent the wrong way. But that would not be
correct, since others had previously seen electron-like tracks curving the wrong way in
cloud chambers; the effect was always attributed to electrons going in the opposite
direction. In fact, Skobletzyn (the first person to build a magnetic cloud chamber)
commented on the strange behaviour of electrons-they occasionally scattered through
almost exactly 1800 ! With hindsight, we now recognize that he was seeing pair
production, but he believed that the positron was an electron going the other way.

Anderson 's great discovery of the positron rested entirely on the fact that he knew
which direction his positron was going; he placed a lead plate in his cloud chamber and
saw the particle lose energy and "curl up" after it went through the plate. Many
observers had seen particles that were consistent with the positron hypothesis, but
Anderson was the first one to be able to reject all other alternatives. That is why we
recognize him as the discoverer of the positron.

Hence, a positron is not a normal electron traveling toward the past. If it were it
would have to gain energy crossing the lead slab. Given the complexity of the

p

FIGURE 2.1 . Anderson's discovery oflhe positron. The track t is produced in a cloud chamber by a
positively charged particle moving upward (not by a negatively charged particle moving downward),
because the particle loses energy in the lead plate P, as is clear from the increase of curvature in the
magnetic field.
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multiple interactions with atoms that take place in the slab, the probab ility of an
energy gain is extremely low, and its regular observation would be entirely
inconsistent with all known laws of probability and thermodynamics.

Having dealt with this element of confusion, it can be said that every known
phenomenon involves the propagation of matter and/or energy from the past to
the future, and never the other way. So time's arrow does exist in nature.

2.1.4. Definition of Local Realism

The three postulates of the last sections together represent local realism.
They can be summarized as follows:

1. Reality: objects and their properties exist independently of human beings
and their observations. Suitable reality criteria allow the identification of
real physical properties in specific situations.

2. Locality : The change in an object due to interactions of any distant object
with a third body are very small.

3. Time's arrow: All real propagations are directed toward the future. The
past therefore cannot be modified.

We have already said that these postulates constitute a form of falsifiable, and
hence nonmetaphysical, realism. This is why it is possible to deduce from local
realism, with the utmost rigor as shall be seen, the so-called weak inequalities,
derived without additional assumptions of any kind. Quantum mechanics predicts
marked violations of the weak inequalities for experiments performed with very
accurate instruments (for instance, photon detectors whose efficiency is greater
than 90%). Such experiments have never been performed, but there is no reason
why further technological developments, or perhaps the study of correlated
objects other than photons , should not allow an experimental- resolution of the
EPR paradox in the near future.

Bohr and Heisenberg have suggested that only a macroscopic reality can be .
said to exist independently of observation, and that it makes no sense to speak of
any such existence of microscopic objects . Einstein disagreed:(IO)

There is such a thing as the "real state" of a physical system, which exists objectively,
independently of any observation or measurement, and which can be described, in
principle, with the means of description afforded by physics. . .. I am not ashamed to
make the ' real state of a system' the central concept of my approach.

Locality has been abandoned by many physicists, such as Bohm, Stapp, and
Ne'eman, who have invented worlds in which instantaneous actions at a distance
between microscopic objects are somehow possible. Time's arrow has been
questioned by Wheeler, Costa de Beauregard, and other physicists who have
entertained the possibility of an active modification of the past (Chapter 5 is
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devoted, among other things, to the ideas of these authors and contains the
corresponding bibliography).

Common to all these attitudes is the desire to save our current quantum
theory, cost what it may. This is understandable, given the great successes of the
theory. The real problem, however, is to understand whether the right way out of
the paradoxical situation is a denial of very simple and very general assertions
that have yet to be refuted empirically or a modification of the existing theory,
replacing it with one that preserves its correct empirical predictions while being
compatible with Einstein's realism. The real choice between these possibilities
can only be provided by experiment. There are two possibilities:

1. The weak inequalities will be found to be in disagreement with experi
mental results, while quantum mechanics will be confirmed once more.

2. The predictions of quantum mechanics will be violated by these new
experiments that do agree with the weak inequalities.

(We shall ignore the pessimistic possibility that experiments violate both the
theory and the inequalities!) In the first case the quantum paradigm of modern
physics will necessarily have to be accepted; in the second Einstein's realism will
have survived a very important test.

2.2. ELEMENTARY PROOF OF BELL'S INEQUALITY

2.2.1. Preliminaries

Again, by "local realism" it is meant that the objects with which the natural
sciences deal (galaxies, stars, stones, atoms) somehow exist objectively and
independently of human beings and their observations (realism) and that they also
exist independently of one another (locality), in the sense that the farther apart
two objects are, the less the physical properties of the one depend on the other.
Propagations from future to past must also be excluded (time 50 arrow).

In the next two sections the paradox of Einstein, Podolsky, and Rosen (EPR)
will be formulated in the form proposed by Bell: there exists a measurable
quantity that assumes two different values according to whether one believes in
local realism or in the validity of the empirical predictions ofquantum mechanics.
The paradox lies in the incompatibility between the two predictions, that is, in the
impossibility of interpreting quantum physics from the natural point of view of
local realism.

We can begin by considering six points.

1. Dichotomic physical quantity. By this is meant a measurable quantity that
can assume only two values, +1 and - 1. In practice every measurable quantity
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can be made dichotomic by a suitable redefinition. For instance, a dichotomic
weight can be attributed to a person: + I for 70 kg and over, - I for less; or a
dichotomic energy to an electron, which will take on the value + I if its energy is
greater than 10 eV and - I if it is less. This can be done with any quantity.

2. EPR-type experiment. In an EPR-type experiment there is a source L of
pairs of objects ( r:J. and ~) of any kind and two measuring apparatuses, Aa. and Ap,

that can measure dichotomic observables on the respective objects. Let us assume
that either apparatus can measure one of the four dichotomic physical quantities,
a, a' , b, b' , on the object in question (Fig. 2.2).

Hence in an EPR-type experiment 16 different measurements can be
performed: the observable measured by Aa. can be chosen in four ways, as can
the observable measured by Ap, independently. Assume that either instrument can
be set for the chosen observable among the four possible by means of a lever that
can assume four positions, each indicating one of the dichotomic quantities (a, a',
b, b'). Assume furthermore that the outcome of a single act of measurement
performed on an object is displayed on a screen attached to the apparatus . Hence,
a ± on the screen will mean that the outcome of the measurement was ±1. So
every pair of objects r:J. and ~, which interact with their respective measuring
apparatuses Aa. and Ap, will give rise to a pair of signs: + +,+ - , - + , - - .
In practice, once the measurable quantities have been chosen on the two
apparatuses , the measurement will be performed on many successive repetitions
of the pairs r:J. and ~. Thus, the source L will have to be capable of producing a
very large number of pairs.

+

i b'

/
a

FIGURE2.2. Experimental apparatus A~ for measuring any of the dichotomic (= ±I ) observables a,
a', b, b' on the incoming physical systems ex. The result (+ I) of the last measurement is shown on the
upper screen.
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3. Correlation function. This is the average, over many measurements, of
the product of the results obtained by the two apparatuses. Pix,y) will represent
the correlation function, where x = a, a', b, b' and y = a, a, b, b' denote the
dichotomic physical quantity chosen by the lever on each measuring apparatus (x
for Aex andy for Ap). Suppose, for instance, that a and b are measured, and that the
pairs of results (-, + ),(+, - ),(-, - ),(+, - ),(-, + ), . .. are found, which
yield the products - 1, - 1, +1, - 1, - 1, . . . . If the frequency of the products
+1 and - lover many measurements is the same as in the first five measure
ments (+ 1 once and -1 four times), the correlation function P(a, b) will be
equal to [1(+ 1)+4( -1)]/5 = -0.6. Clearly a correlation function will, by
definition, always remain in the interval ( - 1,+1).

4. Bell's measurable quantity S , This is a particular linear combination,

~ = P(a, b) - Pia, b') +P(a', b) +P(a', b') (1)

of four correlation functions. Note that only 4 of the 16 correlation functions
introduced enter the definition of ~; furthermore, only the positions a and a' of
Aex's lever are taken into consideration, and only band b' for Ap. The other
positions of the levers will, however, be useful in the sequel.

5. The EPR reality criterion. Again, a very natural idea that enters the
demonstration of Bell's inequality is that physics has to do with real objects that
exist independently of our observations and instruments. "Real" here is used in
the most general and least naive sense possible; if the kind of reality in question is
denied, nothing at all remains. Again, rather than leaving matters in generic and
intuitive terms, Einstein, Podolsky, and Rosen prefer to rely on a precise
statement, which can then be accepted, criticized, or refuted. The following is
their reality criterion:

EPR Reality Criterion. If, without in any way disturbing a system, we can
predict with certainty (i.e., with probability equal to unity) the value of a physical
quantity, then there exists an element of physical reality corresponding to this
physical quantity.

Admittedly this is only one of many ways the existence of something real can be
recognized or defined, but it derives its great importance from the consequences
that can be deduced from it. The reality criterion gets applied to the macroscopic
world, sometimes only intuitively, without a precise formulation. For instance,
one naturally imagines that a certain "reality" lies behind the possibility of
predicting with certainty the result of the next measurement of the length of an
object on which many accurate measurements of the same kind were previously
performed. In this case, then, there is a real property of the object that manifests
itself in the predictable result of the measurement of length. Naive realists will
then say that the object is "really" so many centimeters long; others could be
aware of anthropomorphic elements not only in the unit of length, which is
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entirely conventional, but also in the very notion of extension. They will not deny
that there is something real behind every measurement whose outcome can be
predicted exactly, but they may not wish to commit themselves as to the nature of
that "real something." The EPR reality criterion, which will clearly be accepted
by the former, is designed also to satisfy the latter as well. Despite the
applicability of this criterion to the quantum world, the validity of Bell's
inequality has a far more general-in fact universal-validity, if one accepts
the natural hypotheses from which it is deduced.

6. Separability. Any two objects can be separated enough to make their
mutual influences arbitrarily small. To put this otherwise, given any two objects,
there exists a distance between them, above which the modification of any
physical quantity of either object, owing to their mutual interaction, will be
negligibly small. All propagations furthermore go forward in time. Separability,
so formulated, can be seen as a consequence of the assumption of locality and of
time's arrow discussed in the first section.

This separability hypothesis is based on common sense and on what is now
known about interactions. There are four kinds of interaction. The most well
known is gravity; there is also an electromagnetic interaction, which binds
electrons to nuclei in atoms; a weak interaction, responsible for the disintegration
of neutrons and other unstable objects; and a strong interaction, which binds
protons and neutrons together in nuclei.

All interactions fall off rapidly as distance increases. If the quantity "force"
is used to measure the interaction, one notices that the gravitational and electric
forces diminish like the inverse of the square of the distance, while the weak and
strong forces decrease even more rapidly (exponentially). Founded as it is on
precise scientific facts and on the existence ofan "arrow of time," the assumption
of separability would hence appear to be of unquestionable validity.

Bell's inequality is deduced from these six points.

2.2.2. Demonstration of Bell's Inequality

We now discuss a typical EPR-type experiment. It will be useful to make a
simplifying assumption to allow an easy application of the reality criterion and
the notion of separability, which, however, is unnecessary for the deduction of
Bell's inequality, as demonstrations in which it is not made exist as well; one is
reported in Section 2.2.4. It will be used to render the argument as clear and
elementary as possible. The predictions of quantum mechanics for EPR-type
experiments which have been performed do satisfy the assumption.

Here, then, is the simplifying assumption:

Assumption.Every pair ofobjects r::J. and ~ has a strong correlation, in the sense
that measuring the same physical dichotomic physical quantity on both objects
will necessarily yield the same result.
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Suppose the same position, say a (or a, b, or b'), is selected on Act and AJ3. The
simplifying assumption of strong correlation implies that repeating measurements
on many pairs (X and ~, pairs of equal results are always obtained: (-, - ),
(+, +), (-, -), (-, -), (+, + ),.... The pair of + signs and the pair of 
signs alternate haphazardly with frequencies that depend on the nature of the
chosen dichotomic quantity. The product of the two results, however, is always
+1. Hence, the correlation functions P(a , a) , P(a' , a'), P(b, b), P(b' , b') are all
exactly equal to +1.

Finally, we demonstrate Bell's inequality. Again, it is reached by applying
the reality criterion of Einstein, Podolsky, and Rosen and the idea of the
separability of the two objects of every pair. Suppose it has been checked
repeatedly that the emitted pairs really are strongly correlated. Faith in the
regularity of nature ensures that the same will be true of the next pair. Given,
then, this strong correlation, it is enough to look at the screen ofAcx (see Fig. 2.3)
and read the sign on it to be able to predict with certainty that the same sign is on
AJ3's screen. In many cases strong correlation does not depend on time; that is, it
holds even ifAct and A J3 are not equidistant from ~. The prediction can be referred
to the case in which the distance between ~ and Act is less than the distance
between ~ and AJ3: if a sign appears on A's screen, the same sign will appear later
on the other screen. These are exactly the conditions required for the application
of the EPR reality criterion, so it can be concluded that there exists an element of
physical reality of ~ that corresponds to the value, predictable with certainty, of
the dichotomic physical quantity to be measured on the object,

+
b'

I
a f3

b'

Ii\ \

FIGURE 2.3. Experimental apparatuses A" and A ~ measuring one of the dichotomic observables a, a' ,
b, b' on the incoming physical systems ex and p, respectively. The results (+ I and - I) of the last
measurements are shown on the upper screens.
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If, for instance, P(b , b) is measured, it can be concluded that there exists an
element of reality of'B, which is the cause of the result of the future measurement
of b on ~. Let R+(b) be the element of reality that predetermines the result
b = + I, and let R _ (b) be the element that determines b = - I.

The element of reality is, in any case, an objectively real property of ~ that
has to be viewed as existing even if the future measurement of b on ~ is not
performed. Were this not the case, having accepted the EPR reality criterion and
the idea of separability, one would have to conclude .that R±(b) is created
retroactively by the future measurement performed on ~, which is implausible
and excluded by local realism. So R±(b) belongs to ~ even if the measurement of
b is not performed, provided an ample foundation of previous observations has
made it clear that the process in question involves a strong correlation which does
not depend on time .

In the same conditions it can be concluded that R±(b) belongs to ~ even if
the measurement ofb is not performed on a. Otherwise, ifR±(b) can be attributed
to ~ only when a measurement of b is performed on a, the measurement on r::J.

would create R±(b) at a distance for ~. This conflicts with separability. Therefore,
for every pair ofobjects r::J. and ~ emitted by L there exists an element ofreality,
R+ (b) or R _ (b), which predetermines the result, +1 or -1, respectively, of a
possible future measurement ofb performed on ~.

This conclusion holds for the objects ~ of all the pairs emitted by the source,
even if no measurement ofb is performed on r::J. or on ~. Similar arguments can be
applied to the other correlation functions, P(b', b') , P(a , a), P(a' , a') . Furthermore
the whole argument is symmetric in r::J. and ~ . So the elements of reality R±(a),
R±(a'), R±(b), R±(b') can be attributed to both r::J. and ~ . Some, however, are
superfluous, which means the argument can be simplified. Only R±(a) and R±(a')
will be attributed to r::J. and R±(b) and R±(b') to ~. This means there are four
different signs to choose, so there are 16 different ways of making the choice.
Therefore there exist 16 different kinds of pairs (o, ~), described in Table 2.1.

In the last column the numerical value of the measurable quantity ~ for
every one of the 16 types ofpairs is given . A single example is provided here, and
the other 15 cases are left to the reader.

For the pairs of type 1 the elements of reality are R+(a), R+(a') , R+(b), and
R+(b') . This means that the quantities a and a' of r::J. and the quantities band b' of
~ are all predicted to have the value + I for these pairs. These values are locally
determined by objective properties of the corresponding objects on which the
dichotomic quantities are measured; that is, they do not change if the measured
quantity of the other object changes. Hence the correlation function P(a, b) is
predicted to have the value +1 for type I pairs . For the same pairs-and the same
reason-the correlation functions P(a, b') , P(a', b), P(a' , b') are also predicted
to have the value +1. Combining the correlation functions as in (1), one obtains
~ = +2, just as in Table 2.1. The other values of ~ displayed in Table 2.1 are
obtained similarly.
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TABLE 2.1. Elements of Reality for the 16Types of EPR Pairs

Elements of reality for IX Elements of reality for ~ ~

I R+(a) R+(a') R+(b) R+(b') +2
2 R+(a) R+(a') R+(b) R_(b') +2
3 R+(a) R+(a ') R_(b) R+(b') -2
4 R+(a) R_(a') R+(b) R+(b') -2
5 R_(a) R+(a') R+(b) R+(b ') +2
6 R+(a) R+(a') R_(b) R_(b') -2
7 R+(a) R_(a') R+(b) R_(b') +2
8 R_(a) R+(a') R+(b) R_(b') -2
9 R+(a) R_(a') R_(b) R+(b') -2

10 R_(a) R+(a ') R_(b) R+(b') +2
II R_(a) R_(a') R+(b) R+(b') -2
12 R+(a) R_(a') R_(b) R_(b') +2
13 R_(a) R+(a') R_(b) R_(b') -2
14 R_(a) R_(a') R+(b) R_(b') -2
15 R_(a) R_(a') R_(b) R+(b ') +2
16 R_(a) R_(a') R_(b) R_(b') +2

In general, the pairs emitted by ~ have to be considered a disordered mixture
of the 16 possible types with a priori unknown frequencies. But it is not
necessary to know the frequencies with which the various kinds of pairs are
produced by L, because the table indicates that ~ measured on the ensemble ofall
the pairs emitted will be a weighted average of eight +2 values and as many - 2
values. As such, ~ will never leave the (+ 2, - 2) interval, which implies that
I~I :::: 2, which is Bell's inequality'" 1)

This last result is absolutely general and can be applied to pairs of galaxies,
pairs of stars, pairs of atomic objects, ... , once the dichotomic physical quantities
have been defined. The interest of Bell's inequality lies, among other things, in
this universality of the result. One could wonder whether its application to atomic
objects is impossible on account of the incompatibility of the measurement of
quantum observables described by noncommuting linear Hermitian operators.
The incompatibility of the observables means, however, that they cannot be
measured simultaneously, and nothing implies that this prevents their simulta
neous predetermination, even though only one can be measured at a time on a
given quantum object.

2.2.3. Incompatibility with Quantum Mechanics

In the last two sections it was never necessary to specify the nature of the
two objects ex and ~: The extreme generality of the assumptions allows the
deduction of Bell's inequality for arbitrarily complicated objects, of any size and



2.2. ELEMENTARY PROOF OFBELL'S INEQUALITY 47

a

FIGURE 2.4. Twoquantum systems IX and Pused in the experimental study of the EPR paradox can
be representedas wave packets localized in different regions of space and having (group) velocities
directed in opposite directions. Sphericalwaves have been adopted in the figure.

nature . No phenomenon in any of the natural sciences is known to violate Bell s
inequality. The only exception is represented by the predictions of quantum
mechanics for EPR-type experiments performed with atomic and subatomic
systems.

In the atomic and subatomic world there exist numerous examples of
correlated pairs of the kind considered in Fig. 1.1. Every object (molecule,
atom, particle) capable of decaying into two new objects r:x and ~ represents an
example:

The nitrogen-oxygen molecule (NO) can decay spontaneously from an
excited state to a state in which the two free atoms (N and 0) propagate in
opposite directions.

The reo meson can disintegrate into two gamma rays.

Certain excited atomic states generate the simultaneous emission of two
optical photons; and so on.

The extraordinary fact that has given such importance to Bell's inequality is that
there exist situations in which quantum mechanics predicts unambiguously that
the quantity Ll must assume the value Ll= 2./2 = 2.828, a violation of Bell 's
inequality (Ll ~ 2) by more than 40%. Hence, the existing quantum theory is
incompatible with the natural philosophy of local realism , and this holds at an
empirical level. This is the essence of the EPR paradox, which can be resolved, in
favor of quantum mechanics or local realism, by appropriate experiments.
Contrary to some opinions, experiments performed so far have not decided the
matter. This important point will be discussed in detail in Chapter 3.

It is interesting to observe that the violations of local realism contained in
quantum mechanics have nothing to do with difficulties related to the representa
tion of measurable quantities ("observables") by Hermitian operators. Indeed the
operators of two different quantum objects commute anyway, and hence no
influence on ~ generated by a measurement performed on r:x is implied (and vice
versa).
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2.2.4. Original Proof of Bell's Inequality

It is useful to consider again the simplest formal proof of Bell's inequality,
essentially as given by Bell in his 1970 Varenna lecture ,(12) which was sketched in
Section 1.8. It is assumed that in an EPR experiment dichotomic observables
A(a) = ± I and B(b) = ± I are measured on the two particles r:J. and p,
respectively, moving in opposite directions, as in Fig. 2.4. These observables
depend on instrumental parameters a and b (polarizers' axes, directions of
magnetic fields, etc.) that can be varied. In practice, only two observables [A(a)
and A(a')] are of interest for the r:J. particles, and two [B(b) and B(b')] for the p
particles. In general, it is expected that A(a) and A(a') are incompatible and hence
cannot be measured at the same time, and that the same holds for B(b) and B(b').

It is assumed that hidden variables belonging to r:J. and pfix the outcome of
all possible measurements. These hidden variables are collectively represented by
A, assumed to vary in a set A with a probability density p(A). The normalization
condition

LdA p(A) = I

h'olds.
Thus one can write

A(a, A)= ±l ; A(a', A)= ±l; B(b, A) = ±l ; B(b' , A) = ±l

(2)

meaning that, given A, every one of the four dichotomic observables assumes a
well-defined value. The correlation function P(a, b) is defined, as usual, as the
average product of two dichotomic observables. In the hidden-variable approach,

P(a , b) =LdA p(A)A(a, A)B(b, A)

One can obviously write

IP(a, b) - P(a, b') +P(a', b) +P(a'b') 1

::: Lo. p(A){IA(a, A)IIB(b, A) - B(b', A)I + IA(a' , A)IIB(b, A)+ B(b', A)I}

=LdA p(A){IB(b, A) - B(b' , A)I + IB(b, A)+B(b' , A)I}

since IA(a, A)I = IA(a', A)I = 1. But the moduli of B(b, A) and B(b', A) are also
equal to 1, so

IB(b, A) - B(b', A)I + IB(b, A) +B(b' , A)I = 2

From (2) and (3) it follows that

IP(a, b) - P(a, b') +P(a', b) + P(a', b')1 :::2

which, again, is Bell's inequality.

(3)
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This proof is based on a general form of realism because the hidden variable
A is thought to belong objectively to the real physical systems a. and ~ . It is also
based on locality for three reasons : (1) the dichotomic observable
A(a, A) [B(b, A)] of particle a. W] does not depend on the parameter b [a] of the
other experimental apparatus; (2) the probability density peA) does not depend on
a, b; and (3) the set A of possible A values does not depend on a, b. The time
arrow assumption is also implicit in the independence of peA) on a, b. In
principle, the choices of the values of the instrumental parameters could be
made when the particles a. and ~ are in flight from the source to the analyzers .
Without a time arrow one could nevertheless conceive that "really" the particles
propagate backward in time from the detector to the source and that they modify
the source in ways depending on a and b.

The hidden variable A is essentially the same as the EPR "element of
reality," even though its existence is postulated without invoking the EPR reality
criterion . Therefore, this proof does not require a strong correlation of the
dichotomic observables, as would, for example, be expressed by the condition
A(a, A) = -B(a, A), valid for all A. Such a strong correlation was needed in the
proof of Bell's inequality in Section 2.2.2 because there the reality criterion was
central to the proof of the inequality.

2.3. OTHER FORMULATIONS OF THE EPR PARADOX

Bell's inequality is the single most important expression of the incompat
ibility between local realism and quantum mechanics, but it is not the only one.
Here two other expressions will be considered; in Chapter 3 other inequalities
deduced from the principles of local realism , but not reducible to Bell's, will be
examined as well.

2.3.1. Systems without a State

Given two subsystems a.and B, if the state of a. is described by I\j!}Eytrt. and
that of ~ by Iq>} E ytP, the state of the whole system («, ~) will be described by the
product 1\j!}Iq>}, which belongs to the space ytrt.18l ytP arising from the multi
plication of ytrt. and ytp . The linearity of this product space allows state vectors
to be added to produce others. Consider, for instance , the vector

I
Ill} = J2{1\j!I}Iq>2} + 1\j!2}1q>1}} (4)

where I\j!;} Eytrt. and Iq» EytP (i,j= I, 2). In the absence of superselection rules
(which apply only seldom and in well-known circumstances) the vector Ill} will
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describe a possible state of the pair (n, ~) . Indeed as l"'I)lcp2) and 1"'2)lcpl)
describe possible states of the pair, so will any linear combination of them,
particularly (4).

The impossibility of writing (4) as a product represents a first expression of
the EPR paradox. Any vector ,"') Icp) can be expanded with respect to the sets I"'i)
and Icp):

I"') = L all''''II), Icp) = L bvICPv)'
II v

~, v = 1,2,3, . . .

whence, as tensor multiplication is linear in either factor,

1"')Icp) = L allhvl"'II)lcpv)
IIV

(5)

To try to reproduce (4) one has to assume that indices other than 1 and 2 do not
figure in (5); in other words, only a I ' a2' hI' b2 do not vanish. Then (5).becomes

As the term I'"I)1CPI) does not arise in (4), the product a I bI must vanish, which
means that al = 0 or b, = O. But in the first case 1"'1) disappears from (5), in the
second Icp l )' Hence no choice of coefficients allows the vector (5) to be reduced
to (4). But (5) is the most general vector that can be expressed as a product
of a vector describing tX and another ~. Therefore state vector (4) cannot he
factorized'P'

This is a serious physical problem, not a mere technicality. In quantum
mechanics the only relationship between the theoretical formalism and objective
reality is given by the state vector (or wave function). Even if this description is
very peculiar, most people would agree that some reality lies behind the
formalism . Therefore the idea that there is something real corresponding to the
"quantum object" presupposes that some vector Icp) should describe it. But if
either system has a state vector, the two taken together should be described by a
product. So, in a sense, if tX is real and ~ is real, the state vector describing both
must be a product. Hence if the vector in the tensor product space is not a product
of vectors in the factor spaces, an independent reality cannot be attributed to the
two subsystems. The formalism seems to indicate that the pair (n, ~) is real, but
neither tX nor Bis separately. This is a serious problem because in quantum
mechanics one sometimes has to use nonfactorizable state vectors to describe
subsystems very far apart from one another and, hence, presumably in no position
to interact.
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2.3.2. Determination at a Distance of the State
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Suppose the pair (c , ~) is made up of two spin-4 particle s in the singlet state;
in other words, it is described by the vector

(6)

where

and

0"3 ('3) being the third Pauli matrix for particle rt (B).
An important feature of the singlet state is the invariance under rotations,

which will now be illustrated. To begin with, the most general spin component for
particle rt is represented by

(7)

which is easily shown to have eigenvalues ±1 if 101 = 1. The corresponding
(normalized) eigenvectors will have the general form

lu~)} = cl !u+ } + c2Iu_ } and lu~)} = c1Iu+} + c2Iu_ } (8)

where IC I12+ IC212= Ic\12+ IC2 12 = 1. The values of the four coefficients in (8)
can be determined by solving the eigenvalue equations of the matrix (7). One gets

(9)

and

(10)

Equations (10) and (9) differ, one will see, only as to the sign of O. This makes
sense, since the equation with eigenvalue - 1 of (J' • 0 is the same as the equation
with eigenvalue +1 of (J' • (-n).

The corresponding spin matrix for particle ~ is

Here again the eigenvalues are ± I and the corresponding eigenvectors are

(11)

and (12)
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with the same coefficients (9) and (10). Inverting (8) and (12) one obtains

(13)

and

(14)

respectively. Notice that the normalization is correct because from (9) and (10) it
follows that Icd2+ Icd2 = IC212 + IC212 = 1.

Substituting these expressions into the singlet, one obtains

ITlo} = ~([C)IU~)} +cdu~)}][C2IV~)} +c2IV~)}]

-[C2Iu~)} + c2IU~)}] [CdV~)} + cd V~)}]}

=~ {[C) C2 - c2cdlu~)} Iv~)} + [c( C2 - c2cdlu~)}Iv~)} }

= ~ {IU~)}IV~)} - IU~)}IV~)}} (15)

This expansion is structurally identical to (6), but contains the eigenstates of the
spin component along direction n. From (8) and (9) one has

which is a phase factor and can be neglected. So the singlet state is rotationally
invariant. This has several important consequences. To begin with, two observa
tions can be made.

(1) The spin observables written out in full are

fz As, =20"· n, (16)

It can be deduced from (15) that if a measurement ofS; gives the result ±fz/2, the
measurement of Tn on particle ~ of the same pair will give the opposite result
=r-fz/2. It is important to note that this prediction always applies ; time does not
come into it at all. The measurements do not have to be made at the same time.
The evolution of the observables in question is
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where rr is the Hamiltonian of the first particle. Since, at least in nonrelativistic
quantum mechanics, [Sn(O), H IX

] = 0 for a free particle and dH' / is a function of
H IX

, we have

Sn(t) = Sn(O)eiH'/e-iW/ = Sn(O)

Of course a similar relation holds for the other particle. So the anticorrelation of
spin measurements follows from the fact that the singlet belongs to the null space
of the operator [Sn(t) + Tn(t')] for all t, t ; in other words

(17)

This means that if a measurement of S; at time t produces the result ± I, a
measurement of T; on particle ~ of the same pair at any other previous or future
time t must give =Fl .

In relativistic physics the matter is not so straightforward because the spin of
a Dirac particle does not commute with the Hamiltonian, but the result is the
same.

(2) Two different operators like (7) do not commute . Indeed it follows from
(7) itself that

[0" . n, 0" . n'] = 2iO" . n x n'

which vanishes only is n and n' are parallel or antiparallel. This means that it is
impossible to measure the two corresponding observables (which are the spin
components of the particle along directions n and n') at the same time. According
to the Copenhagen interpretation they cannot both be well defined in the state of
the system. In other words, 0" • nand 0" . n' cannot have predetermined values if
n =I ±n' for any state vector describing particle o:

Since the singlet is in the null space of (0" +T) ' n for all n, the paradox can
be reformulated in the following terms . Take a statistical ensemble of («, ~) pairs
in the singlet state, whose o-particles always travel leftward and whose ~-particles

travel rightward. The apparatuses can be set up very far from the source to
prevent the spatial parts of the wave functions from overlapping. If observable T;
is measured on the ~-particles, it is easy to demonstrate that the average value
{lloITnlllo} = O. So a random sequence of +/i/2 and -/i/2 with equal frequency
will result from measurements. If, for a given ~-particle, one finds +/i12 {-/i12} ,
the result is, according to the axioms of~uantummechanics, a well-defined value.
So the state of particle ~ becomes IV~)} {Jv~)}} . Taking account of the anti
correlation predicted by (17) the state of the pair must be

(18)

Performing measurements on the ~-particles, the n-component of the spin of the
n-particles gets determined at a distance. Had another fi been chosen, the reality
of another component would have been manifested. Therefore the reality of the
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IX'S is determined at a distance. It can be shown that this has no statistical
consequences because a mixture of the two vectors (18) in equal proportions has a
density matrix that does not depend on n. It is, nevertheless, a disturbing result for
a realistically minded physicist.V'"

2.4. CRITICISM OF THE COPENHAGEN APPROACH

Bohr's reply to the argument of Einstein, Podolsky, and Rosen is founded on
his notion of complementarity; this has been looked at in Section 1.2. Comple
mentarity is, in tum, closely related to Heisenberg's uncertainty relations . But,
useful as they are in a description of measurements and their outcomes, it is
misleading to ascribe ontological significance to these notions. The drift from the
empirical to the ontological was dangerously easy, and indeed encouraged, in the
atmosphere of positivistic zeal that prevailed during the early development of
quantum theory.

The fact that only one of two complementary features can be manifested at a
time does not, as we shall soon see, mean that both cannot be possessed together;
likewise the perturbation of a particle's position by the measurement of its
momentum does not mean that the unobserved particle cannot describe a
trajectory. But if one wishes to attribute reality only to the measured, and dismiss
all else as being metaphysical, or just not there, then a particle's position-not
what we know about it, the position itself-is lost when momentum is measured.
The position is not perturbed, or changed, but destroyed. It vanishes and becomes
undefined, indeterminate.

2.4.1. Heisenberg's indeterminacy relations

Every physics student learns Gedankenexperimente, qualitative considera
tions and mathematical proofs that establish the validity of Heisenberg's inde
terminacy relations :

(19)

It is only seldom pointed out, however, how arbitrary Heisenberg's arguments are.
The conclusion that one cannot simultaneously measure the position and
momentum of an electron with arbitrarily small errors does not imply that such
quantities have no physical meaning and must be considered objectively unde
termined. Only a positivist attitude, prevalent in Heisenberg's times, can lead to
such an inference . Moreover one can show that the validity of the uncertainty
relations still allows one to calculate simultaneous values of position and
momentum in the past with any desired accuracy. Heisenberg wrote in 1930:(15)
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Then for these past times f:u/1p is smaller than the usual limiting value, but this
knowledge of the past is of a purely speculative character, since it can never (because of
the unknownchange in momentumcaused by the position measurement) be used as an
initial condition in any calculation of the futureprogress of the electron and thus cannot
be subjected to experimental verification. It is a matter of personalbelief whether such
a calculation concerning the past history of the electron can be ascribed any physical
reality or not.
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Heisenberg's own "personal belief," which has since become the dominant
point of view, was that one should always refrain from attribut ing physical reality
to any retrodicted coordinate or momentum values. Fortunately it is possible to
disagree. Indeed it is possible to calculate position and momentum in the past
with a precision better than Eq. (19) would seem a priori to allow. The simplest
way to understand this point is to repeat Heisenberg's argument accompanying
the above quotation in his book. Consider an electron initially described by the
plane wave

\(f(x, y. z) = %eip
.
r/h (20)

for which I!J.Px = I!J.Py = I!J.Pz = 0: the electron's momentum p is known exactly.
At time to let a position measurement be made on the electron with finite errors
1!J.x, l!J.y, and Sz , that is, with the results

x =Xo± 1!J.x/2, y =Yo± l!J.y/2, z =Zo ± &/2 (21)

Position and momentum certainly satisfy (19) at any time t::: to, because
momentum suffers a perturbation and becomes unknown when position is
measured. Thinking of the situation existing before to, one can instead draw a
very different conclusion. Given (20), at all times t :s to the electron had a
perfectly determined momentum p, implying

fi.px = I!J.Py = I!J.Pz = 0 (22)

Clearly, for t :s to also the velocity v = p/m was exactly determined and known.
Therefore the electron position can be retrodicted from (21), valid at t = to, to
have been for all t :s to :

I!J.x
x(t) =Xo ± 2 - vx(to - t)

l!J.y
y(t) =Yo ± 2 - v/to - t) (23)

&
z(t) =Zo ± 2 - vi to - t)

The errors of the retrodicted position are the same 1!J.x, l!J.y, and & that applied at
time to. But finite errors for position and zero errors for momentum, as in (22),
imply

(24)
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FIGURE 2.5. Heisenberg's Gedankenexperiment on the single-slit diffraction of electrons is normally
used to establish the validity of the indeterminacy relations. As shown in the text, with a different
approach it can also be used to violate the indeterminacy relations in the past.

in violation of (19) . This is the essence of Heisenberg's argument leading to a
I

violation of the indeterminacy relations in the past (Fig . 2.5).
There is only one way to refute (24) and it consists of Heisenberg's

positivistic assumption-present enough in the previous quotation-that it is
forbidden to attribute position and momentum to an unobserved electron, such as
the electron for which the results (22) and (23) were calculated at time t :::: to. This
is a philosophy with a Machian flavor, which is not even fashionable today, after
the errors made by Mach, in his obstinate refusal to accept the reality of atoms,
have been amply recognized.

Today it is concretely possible to adopt a realistic attitude and to claim that
(24) shows that Heisenberg's indeterminacy relations are violated in the objective
reality of the past and then, by natural extension, at all times. After all the future
does not yet exist, the present is no more than a boundary, and the past is the only
reality we can claim to know with some accuracy. It is therefore also concluded
that the plane wave (20), which does not contain any information about the
electronic particle localization, describes only an average reality of the electron's
motion and that Heisenberg's relations (19) must be interpreted as scatter
relations valid in a statistical ensemble of similarly prepared electrons. The
individual electron, instead, has a well-defined reality to which Eq. (24) applies,
and quantum mechanics is incomplete in the Einstein-Podolsky-Rosen sense.

Ideas of this type have been adopted by some contemporary authors.(16,17).
Wesley(16) gives several examples in which Heisenberg's relations (19) appear to
be grossly violated (a photon in a living cell, a photon received by a pocket radio ,
the electron in the hydrogen atom, a photon in the tip of a scanning light
microscope, the electron in beta decay, ... ). To give the flavor of these arguments
consider the beta decay of a tritium nucleus of radius 1.7 x 10- 13 em. At the
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instant the electron leaves the nucleus it is localized, say, in a sphere two times
larger than the nucleus. Then

L1x s 3.4 x 10- 13 em

The kinetic energy of the emitted electron is about T= 18.6 keY, which corre
sponds to a momentum ofp = J2mT ~ 7.4 x 10-18 g-cm/s. The uncertainty in
the momentum Ap of the electron as it leaves the tritium nucleus is then certainly
less than p itself; therefore,

The simultaneous uncertainties in position and momentum then yield

L1xAp/fz s 2.4 x 10-3 « 1

In considering the foregoing derivation, one should not forget the strictly realistic
attitude that lies behind it. Wesley's electron is a particle that must be viewed as
being localized in space at every instant of time: it is not clear whether it should
also be imagined as endowed with a well-defined momentum. In all cases it is, of
course, no wonder that such an entity can be shown to violate (19). Actually one
knows that an electron has a dual nature (wave +particle), but it seems legitimate
to ask a question concerning the particle alone .

Interesting are also the arguments presented by Croca, (1 7) who believes that
the path to challenge Heisenberg's relations is now open for two reasons: One is
mathematics with the development of wavelet analysis, more general than the
usual Fourier analysis ; the other is a purely technological breakthrough in the
techniques of microscopic imaging, allowing experimental resolutions that
greatly violate the usual maximum resolution limit

A
L1x':>i-

- 2 sin E
(25)

This new generation of microscopes is typified by the scanning tunneling
microscope, for which Binnig and Rohrer(l8) received the Nobel prize . Recent
developments allowed position to be measured with a resolution ~ A/50, in sharp
violation of (25).

In Croca's mathematical argument it is implied that all quantum particles are
contained in a wave having a Gaussian amplitude centered at point Xo where the
particle is concretely located:

\jIk(X) ~ Ao exp[-(x - xo)2 /2cr~] exp[ikx] (26)

The essential point is that (26) is the most elementary wave to be considered and
that the fundamental relation p = hk between particle momentum p and "wave
number" k is assumed to hold only with the k appearing in (26), not with the
different wave numbers arising from a Fourier analysis of (26). This means that
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the elementary wavelet (24) describes a particle having Ax = 0'0 and Ap = 0,
thus a particle violating Heisenberg's relation from the start. Also some well
known quantum postulates are here violated, but the argument is interesting in
showing that Heisenberg's relations are valid ifone accepts quantum mechanics: a
future modification of the theory could well lead to an overcoming of Heisen
berg's limit. This is just the opposite of what is usually believed concerning the
relationship between the "uncertainty principle" and quantum theory, about
which Feynman wrote :(19)

The uncertainty principle "protects" quantum mechanics. Heisenberg recognized that
if it were possible to measure the momentum and the position simultaneously with a
greater accuracy, the quantum mechanics would collapse. So he proposed that it must
be impossible. Then people sat down and tried to figure out ways of doing it, and
nobody could figure out a way to measure the position of anything-a screen, an
electron, a billiard ball, anything-with any greater accuracy. Quantum mechanics
maintains its perilous but accurate existence.

In the light of the previous considerations it appears that Feynman's
statement is justified only if one sticks to a strict positivistic philosophy ("the
only reality consists of acts of measurement"). For a realist the completeness of
quantum theory has already collapsed at least since 1935.

2.4.2. Complementarity for Space-Time and Causality

To begin with, Bohr's formulation of complementarity for space-time and
causality will be considered. There is an instinctive tendency, rooted in direct
macroscopic experience, to describe events in space and time and establish causal
relations between them; these have become fundamental "categories" of under
standing and communication.

It is natural to describe events as taking place in three-dimensional space and
evolving in time. So one says that a seminar takes place in the main hall of the
physics building starting at 10 A.M. tomorrow, that a picture was taken in June at
10,000 m above Iceland, that a gift was bought in India during the last winter
vacation, and so on. The use of space-time in classical physics is common
practice and represents an extrapolation of daily life conceptions to the new
domains considered by modem science. The scientific description is quantitative
and as unambiguous as possible: particular sets of space-time coordinates are
introduced to this end.

A similar extension from ordinary life to physics is used for the idea of
causality, again with a more precise and quantitative formulation in the scientific
case; an evolution is causal if it takes place according to well-defined rules. For
Bohr the most important of these rules are the conservation laws of energy and
momentum since they identify a small part of the set of all conceivable processes
by allowing the actual realityof only those in which the conserved quantities of
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an isolated system remain unchanged. Neglecting for simplicity other conserva
tion laws (angular momentum, electric charge, ... ), one can regard a causal
description as being one according to the conservation of energy and momentum,
at least in classical physics.

The physicist who studies the phenomena of the quantum domain will
naturally try to use his or her macroscopic preconceptions and will try to describe
atomic processes as taking place in space-time and according to the rules of
energy-momentum conservation. However, he or she will soon find that it is not
possible to do so, because two quantum observables are often described by
noncommuting operators, which implies not only that they cannot be measured
simultaneously but also that the measurement of one of them in general destroys
all previous knowledge conceming the other.

The question of space localization (position measurement) and causality
implementation (momentum measurement) represents a good illustration of
complementarity. Precise space localization of a quantum system can be obtained
by measuring position with infinite precision (fu: =0). Immediately after such a
measurement the wave function becomes the o-function o(x - xo), if Xo is the
obtained value of position, and the particle can be thought to be really at xo. But a
o-function can be written as a superposition of the whole range of plane waves,
each with the same weight, which means that nothing is known about momentum
p, or, in other words, that !'!p= 00. One therefore loses all the knowledge about p
available before position was measured, so a definite momentum should not be
attributed to the particle; here the momentum literally does not exist. But this also
means there is no evidence about the conservation of momentum, e.g., in
collision processes . Bohr concludes that a spatial localization leads to the
abandonment of causal description.

Symmetrically, with a different experiment, one can choose a causal
description instead. This can be done by measuring momentum p with infinite
precision (!'!p = 0), and it is well known that momentum is found to be conserved
whenever checked. The wave function of the quantum system becomes a plane
wave after such a measurement, and one can now describe a quantum system as
having a well-defined momentum. However, as the squared modulus of a plane
wave is constant, nothing at all is known about position, since the same
probability density is assigned to all of space (fu: = (0). In this way the
localization in space is completely lost, and one cannot insist on the reality of
a well-defined position. Bohr concludes that a concrete implementation of causal
description forces the physicist to abandon the description of the quantum system
as localized in space.

The two possibilities that form the essence of classical physics (space
localization and causal description) are thus seen in the quantum domain to be
mutually incompatible, to exclude one another. Bohr concludes that in quantum
physics it is, in principle, impossible to represent atomic processes as developing
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causally in space and time and that such an impossibility can be attributed to the
finite value ofthe quantum ofaction h (Planck's constant). It is in fact the nonzero
value of h that generates the noncommutative algebra of quantum operators and
which makes a simultaneous measurement of two of them impossible. Bohr
considered each one of the two incompatible descriptions as necessary for
physics : understanding and culture are formed in the macroscopic world where
space-time and causality are absolutely necessary. Therefore, one cannot avoid
thinking that atomic events take place in space-time and develop causally, but the
impossibility of using the two representations together must be accepted . In
Hegelian terms it can be said that the thesis (space-time) and the antithesis
(causality) can never be united in a synthesis but must always remain opposed
and irreconcilable. The latter observation is essential for an understanding of the
historical and cultural roots of complementarity; this problem will, however, be
discussed in Section 2.4.6.

2.4.3. Complementarity for Spin Components

Bohr 's impossibility argument against a simultaneous description in realistic
terms applies to any two incompatible observables. Consider, without loss of
generality, the case of a spin-! particle. It is well known that any two of the spin
component operators S), S2, S3 do not commute. This means that their
corresponding observables S), S2, S3 cannot be measured at the same time. Let
the spin-! particle in question be in the initial quantum state

(27)

for which 83 is well defined and equal to +Il /2. The state (27) can be written as a
superposition

(28)

of the two (normalized) eigenspinors of the SI operator. According to the
quantum-mechanical rules a measurement of the 8\ component can give two
results

(29)

and the final spin state (after measurement) must correspondingly become

(30)
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where the spinors on the right side are eigenstates of the S\ operator. Each of
them can in tum be written as a superposition of the two eigenstates of the S3
operator. Consider, for instance, the equality

(31)

where the normalized spinors on the right side are the eigenstates of the S3
operator. Since the moduli of the coefficients in superposition (31) are equal, the
two possible S3 eigenstates are equiprobable . The 83 component must therefore
be considered completely unknown in state (31). The same applies to the second
spinor on the right side of (30). The complementarity principle leads to the
conclusion that the implementation (by measurement) of the reality of 8\ leaves
83 completely undetermined. The argument is symmetrical in both values (1 and
3) of the index; 83 can become known if measured, but in such a case it is 8\ that
becomes necessarily completely undetermined. One can then conclude, with
Bohr, that 8\ and 83 are complementary aspects ofreality: in some cases 8\ can be
considered real, in other cases 83, but never both in the same physical situation.
By "real " one means "predetermined by objective properties of the observed
system."

In the following sections it will be shown that the previous conclusions are
by no means inevitable or "necessary" because complementarity only postulates
rather arbitrarily certain difficulties that, in fact, do not exist, since a very natural
description of physical reality can be given in which all different spin components
are considered real at the same time.

2.4.4. General Quantum Predictions for Spin-~

An arbitrary spin observable of a spino! particle is represented in quantum
mechanics by the most general 2 x 2 Hermitian matrix L, which can be written

(32)

where IX, ~), ~2, ~3 are four real constants, I is the 2 x 2 unit matrix, and 0"), 0"2,

0"3 are the usual 2 x 2 Pauli matrices, related to the spin-component operators S,
in the usual way:

Ii
S· = -0" .

t 2 I

The most general spin state is

(i = 1,2,3) (33)

(34)
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for which the normalization condition
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(35)

is assumed satisfied. It is easy to show that to every spinor of this last kind one
can associate a direction in space specified by a unit vector 0, in the sense that the
eigenvalue equation

(36)

can be satisfied for a suitable 0 with the eigenvalue +1, as shown. This is the
inverse of the problem dealt with in Section 2.3.2. The components of 0 can be
written in terms of c\ , C2, and vice versa. Apart from an irrelevant phase factor
one has, as in (9),

(37)

By changing the sign oro everywhere in (36) and (37), one obtains

(38)

where

(39)

as in (10). The two eigenvalues (± 1) of <T • nand the corresponding eigenvectors
have therefore been obtained. These results can be extended without any
difficulty to the operator (32), since one can set

A P
n=-

IPI
(40)

and note that Eqs. (36) and (38) become eigenvalue equations of the operator
<T . Pwith eigenvalues ±IPI, respectively. The extra term containing ex in (32)is
proportional to the unit matrix and can only contribute an additional term to the
eigenvalues. Therefore,

(41)

Hence, the eigenvalues of the operator :E are

:E1.2 = ex ± IPI

and the corresponding eigenvectors have already been found.

(42)
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It will next be supposed that the spini systems in question are initially in the
(normalized) state

(43)

for which an observable I:o== r:xol + flo . a can obviously be found having l\jIo}
as eigenvector with eigenvalue + I , namely such that

(44)

if DO = flo/lflol. By using the standard expressions for the Pauli matrices the
expectation value of operator (32) in state (43) can easily be calculated:

(\jIolI:I\jIo) = r:x + ~3(1c0112 - IC0212) +Re (c~IC02(~1 - ~2)} (45)

If account is taken of (44), this last result becomes

(46)

One must also have

(47)

if PI ,2 are the a priori probab ilities in the state l\jIo} of the eigenvalues I: t ,2,

respectively, of course, with

PI +P2 = 1

Therefore it follows , by comparing (46) and (47), that

_~ [I flo . fl ]
PI .2 - 2 ± Iflollfll

(48)

(49)

In the next section it will be shown that realistic and causal models exist that
reproduce exactly the quantum-mechanical predictions for I:I ,2 and for Pl.2'

Before coming to this matter, there is a final quantum-mechanical prediction
which is useful to recall. Considering the operator defined by Eq. (32) and a
second similar operator

I:' = r:x'l + W.a

it is a simple matter to calculate the commutator

[I:, I:'] = 2ia . fl x W

(50)

(51)

Obviously this will vanish only if the vectors fl and Ware parallel (or
antiparallel), It can be concluded that two spin observables are always incom-
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patible if they refer to directions of space forming angles different from 0 and
from 1t.

2.4.5. Simultaneous Reality of Different Spin Components

It will now be shown that a model of the physical reality of spin measure
ments exists, that does not contradict the empirical predictions of quantum theory
in any way, with the following features:

(i) A causal description of quantum spin measurements is provided that is
in complete agreement with the predictions of standard quantum theory
for the "results" LI ,2 and for their probabilities PI,2'

(ii) All spin observables are simultaneously predetermined by objective
properties A of the measured systems.

(iii) There exist physical properties a, ~h ~2, ~3 of the measuring apparatus
that are essential in defining logically the measured observable and in
building up concretely the result of the measurement.

(iv) During the measurement the A's undergo a statistical redistribution.
When properly chosen this redistribution allows one to reproduce
exactly the quantum-mechanical predictions for subsequent spin
measurements.

(v) It is physically impossible to measure simultaneously two observables
that in quantum mechanics are described by noncommuting operators.

The model assumes that quantum-mechanical state vectors describe some
concrete physical situations, and not one's knowledge of the atomic world, as
Pauli and Heisenberg preferred to believe. The model can be based on the
following ideas. First it is assumed that the physical system is a spinning sphere
with angular momentum A forming an angle 90 with respect to the direction DO

specifying the quantum state (43) as in (44). Second, an apparatus built for
measuring the observable represented in quantum mechanics by the matrix (32) is
assumed to work as follows:

1. It measures the sign ~ of the projection of A on 13 by "squashing" A onto
13 and registering the value + I (- I) if the two vectors after squashing
are found to be parallel (antiparallel) [after which it modifies A according
to rules to be specified later].

2. It multiplies the result so obtained by 11
3. It adds a to the new result.

The outcome of these three operations is

a+ 1131· ~ (52)
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where

~ = Sign{~· Pl

65

(53)

Obviously (52) will in all cases coincide with one of the two quantum-mechanical
eigenvalues LI ,2 given in (42).

In order to reproduce the quantum-mechanical probabilities as well it is
necessary to define within this model the "state" represented in quantum
mechanics by the spinor (43)-(44). In a realistic approach the quantum state is
represented in much more concrete terms than allowed by a purely abstract
representation such as (43). In fact this spinor can be assumed to describe a
statistical ensemble of spinning spheres with ~ vectors distributed according to a
density function independent of the azimuthal angle <1>0 and given in terms of the
polar angle 90 by

which is never negative and satisfies

if 0 < 90 < ~- - 2

otherwise

(54)

(55)rt

d<l>o J: d90 sin 90 p(90) = I

It is only necessary to show that the negative content of the complementarity
principle can be overcome, and the previous model is perfectly adequate for this
purpose, as will immediately be shown . It is not necessary to believe that the
model is a perfect representation of reality, since there must be other realistic
models which lead to the same empirical consequences as the one here
cons idered. The choice of the best model for spin- j goes beyond the purposes
of this chapter.

Given the rather mechanical nature of steps 2 and 3 of the previously defined
measurement process, the probability of finding the result LI = a.+ IPI is
obviously equal to the probability of finding ~. P positive. (See Fig. 2.6.) The
outcome of the assumed "squashing process" of~ on Pis deterministically fixed
by the initial sign of the scalar product of these two vectors . Considering a system
of (polar, azimuthal) angles, one can assume the directions of Po and P to be
specified by (0, 0) and (9(, 0), respectively, and that of ~ by the running angles
(90, <1>0)' Note that 91 is the angle between Po and p. The condition for obtaining
~ .Ppositive is then

cos 9 = cos 90 cos 91 + sin 90 sin 91 cos <1>0 (56)

From the latter condition one obtains

2 9 tarr' 91 cos? <1>0
cos = -----;;-'-::---~:_

o I + tan2 91 cos? <1>0
(57)
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(59)

FIGURE 2.6. Hidden-variable modelfor spin-] , The "eigenvalue"+1112 of the no spin component is
represented by a statistical distribution of A. 's in the upperhalf-plane, with density(54). If a givenA. of
a set with such a distribution falls in the dashed area, the measurement of the spin component (J • Il
will also give +~/2.

From (54) and (55) it follows that

J
2!t JI 1

PI = d<l>o d cos 00 . - cos 00 . 0[cos 00 cos 0) + sin 00 sin 0) cos <1>0]
o 0 7t

(58)

where 0 is the Heaviside step function :

0[x] = { 01 if x ::: 0
if x < 0

If the right side of (57) is called L(O) , <1>0), and (56) is taken into account, it is not
difficult to obtain

1 1 J3!t/2

Pi = 2+ 2rr d<l>o [cos' 00]1(9 1,<1>0)
!t/2

which is easily transformed into

1 1 J3!t/2 1
PI =2 + 2rr !t/2 d<l>o 1+ tan2 0

1
cos- <1>0 =2[1 + cos 0d (60)

Given the definition of Ot. this coincides with the first of Eqs. (49). Since
PI +P2 = 1, even the second result (49) is necessarily obtained from a correctly
normalized model like this .

The model therefore reproduces quantum-mechanical eigenvalues and their
probabilities for all possible measurements and for the most general state, as
desired. There is, however, a further point that needs to be investigated, that of
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subsequent spin measurements on the same particle. Quantum mechanics states
that a "reduction of the state vector" takes place during the measurement, as a
consequence of which the statistical properties of the considered set of particles
are modified. The same result can be obtained by assuming that during
measurement the angular momentum vector A undergoes a change of direction.
In the cases in which the value ~I of the measured observable has been obtained
this change ofdirection isassumed to take place in twosteps: (i) As has been seen, A is
squashed onto the direction 13 contained in the apparatus and defining the meas
ured observable. (ii) Immediately after A is redistributed in space around the
direction 13 with a probability independent of the azimuthal angle and dependent
only on the (polar) angle 0 between Aand 13 introduced in (56) and given by

Pl(O)=!nolcoso ifO~O~~ (61)

otherwise

Where the result ~2 is obtained a similar redistribution of A takes place, but
around the direction -13, so the new density of vectors A becomes

p,(9j ~!~ [cos 91 if ~ < e< 1t2 -
otherwise

(62)

0.85

0'65_~

2.00 4.00 6.00 8.00 10.00
Time (x10"')

FIGURE 2.7. Tunnel effect reinterpreted. A potential barrier is represented by the two horizontal
lines. In the de Broglie-Bohm model particles are surrounded by an objectively existing wave. The
figure represents a statistical ensemble of particles, all embedded in the same wave packet, but with
different positions. Every individual particle describes a trajectory. As one can see, particles in front
(in the rear) of the wave packet cross (are reflected by) the barrier. Time on abscissa, space (only one
dimension) on the ordinate. Calculations made by Dewdney and Hiley.(34)
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In this way the statistical set of spin-! particles during measurement undergoes
precisely those statistical modifications that ensure the validity of the usual
quantum-mechanical predictions also for subsequent spin measurements. It is
physically impossible to squash the A vectors simultaneously onto two non
collinear directions: therefore in this model, as in quantum mechanics, two
observables referring to two noncollinear directions in space are incompatible and
cannot be measured simultaneously.

At this point it becomes apparent that this realistic model for spin-!
reproduces exactly all the quantum-mechanical predictions while violating the
complementarity principle. Obviously Bohr's formulation of quantum theory was
not demanded by strong scientific evidence, if the principle of complementarity
can be rejected without rejecting quantum theory itself. The arbitrariness of
Bohr's reasoning turns out to be in the assumption that if two observables cannot
be measured simultaneously then they cannot be predetermined by objectively
existing physical properties of the measured system. It is all as simple as that!

The conference New Theories in Physics was held in Warsaw in 1938. In the
proceedings of this meeting one can see that von Neumann'r'" exposed his
famous theorem against "hidden variables" and that Bohr(21) commented on it by
expressing his highly appreciative opinion and his admiration. He also pointed
out that one of his papers, in more elementary ways, had arrived at essentially the
same conclusion. The paper Bohr had in mind was clearly the one he had written
three years before(22) as an answer to Einstein, Podolsky, and Rosen.P' This
illuminating connection with von Neumann's theorem shows that Bohr believed
that his formulation of complementarity could provide an "impossibility proof"
against Einstein's causal space-time program. It should therefore not be surprising
that arguments not very different from those used against von Neumann-type
theorems(23) can be used against complementarity as well.

2.4.6. Historical Roots

In order to understand Bohr's complementarity one has to start from the
observation made at the end of Section 2.4.2: Bohr can by no means be
considered a Hegelian. It is true that he accepts the presence of contradictory
elements in the physical theory, e.g., those of particle and of wave for the
description of the same physical system. The particle is localized within a very
small region of space and its presence requires the postulation of a vacuum for
separating different particles and therefore introduces a discontinuity. The wave
occupies instead a large region of space-the whole universe if it is a plane
wave-and its presence allows for a continuous description of reality. Since no
object can at the same time be large and small, says Bohr, particle and wave are
two contradictory elements that are clearly related to another pair of opposites,
those of continuity and discontinuity. But this partial acceptance of Hegelian
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views does not at all imply that for Bohr the contradictions can be resolved in
higher syntheses: on the contrary, the avoidance of such resolutions can be
considered one of the central tendencies of his life! One of his pupils, Leon
Rosenfeld, described the situation in these terms:(24)

While the great masters (Planck, Einstein, Born, and Schrodinger) were vainly trying to
eliminate the contradictions in Aristotelian fashion by reducing one aspect to another,
Bohr realized the futility of such attempts. He knew that we have to live with this
dilemma . .. and that the real problem was to refine the language of physics so as to
provide room for the coexistence of the two conceptions .

Living with the dilemma is clearly something very different from trying to
solve it. If one understands that the Danish philosophers Seren Kierkegaard
(1813-1855) and Harald Heffding (1843-1931) entertained exactly the same
opinion about the impossibility of resolving contradictions, the nature of Bohr 's
complementarity becomes clear: complementarity was imported into physics
from a secondary branch of philosophy, Danish existentialism! A few quotations
can give the flavor of such a connection. In Die Zerstiirung der Vernunft, Gyorgy
Lukaks devoted 60 pages to Kierkegaard and wrote, for example:(25)

Kierkegaard fights against Hegel by breaking the living dialectical unity of the two
contradictory elements and bringing them into a complete isolation, and by swelling
them into independent metaphysical principles.

Now this is exactly what Bohr does with the ideas of particle and of wave
and with his refusal to accept the Einstein-de Broglie picture in which the two
aspects coexist objectively and constitute the observed physical system.(26) It is
extremely difficult to imagine that such a strange idea (that the contradictions
regarding physical reality cannot be resolved as a matter of principle!) could be
conceived several times independently; hence Jammer writes:(27)

There can be no doubt that the Danish precursor of modem existentialism and neo
orthodox theology, Saren Kierkegaard, through his influence on Bohr, affected also the
course of modem physics to some extent.

One can add that the influence of Kierkegaard on Bohr was not limited to
some marginal features of quantum theory but concerned the very central idea of
complementarity. In fact, for Kierkegaard contradictions in life and in natural
sciences are rigid and impossible to overcome. This conviction went together with
sharp attacks against Hegel's rationalism and his idea that contradictions can
always be synthesized (i.e., resolved) at a higher level. On the contrary, thought
Kierkegaard, contradictions are irreconcilable and constitute alternatives that
mutually and definitely exclude one another. Thus, e.g., in a person's life the
conflict between, on the one hand, the desires and the needs of the subject (the
thesis) and, on the other, the concrete situation in which that person is constrained
to move (the antithesis) provokes a state of permanent anguish that can never be
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resolved, in Hegelian fashion, in a synthesis of a different qual ity. A similar
situation is encountered in the natural sciences, even though it is fair to add that
Kierkegaard was much more interested in theological, spiritual , and psycho
logical problems than in scientific ones. He termed his philo sophy "qualitative
dialectic."

As seen in Section 2.4.2 , Bohr thought that an element of irrationality is
introduced into physics by the finite value of the quantum ofaction h, so scientists
must always oscillate between space-time and causality rather than being able to
use both of them. Similarly he thought it impossible to use the conceptions of
particle and of wave at the same time, but that one must again oscillate between
the former and the latter in order to "explain" different experimental facts. Also
for Bohr, one is in the presence of contradictory opposites that are mutually
irreconcilable and thus not utilizable in a synthesis that could provide a complete
description of the essential aspects of quantum reality.

If the conceptual continuity between Kierkegaard and Bohr is clear, it is
difficult to find a direct connection between them, partly because the former died
half a century before the latter began university. There is, however, plenty of
evidence of important indirect connections, the key figure being Heffding,
Among the early reconstructions of Bohr's cultural background, one should
read a little known but important paper by Nils Svartholm(28) that provides
a reconstruction of the relationships between Kierkegaard and Heffding
and between Heffding and Bohr. More recently there have been studies by
Favrholdt ,(29), Faye,(30) and Moreira.P !'

The importance of Heffding for his own cultural formation has been so
described by Bohr(32) in a posthumous homage (1931) during a talk at the Royal
Academy of Sciences and Letters:

[I had] the privilege of having been in close contact with Heffding since my early
youth, because my father was an intimate friend of him and 1 had, at all stages of my
life, the possibility of benefiting from his true scientific and philosophical spirit . . . .

Favrholdt adopted a radical intemalist vision of the history of science and
tried to describe complementarity as an inevitable consequence of the experi
mental developments and of the quantum-mechanical formalism. This thesis has
been proven wrong here since it has been shown that quantum-mechanical
predictions can be reproduced by a realistic model while violating the comple
mentarity principle. Therefore complementarity was not inevitable. The present
conclusion is more in line with the results of Faye and Moreira, who point out that
Heffding postulated the existence of a profound incompatibility between the
categories of continuity (wave) and discontinuity (particle) that had its origin in
the constraints of human psychology and thought. He believed that , although
incompatible, they are also inevitable. As one can see, this is Kierkegaard's
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"qualitative dialectics" once again. This cannot be surprising if one recalls
Heffding's definition of Kierkegaard's influence on him-"bewitching." All this
evidence, and much more that can be found in Refs. 26, 30, and 31, strengthens
the independent conclusion reached here, that Bohr created complementarity
under the influence of the philosophical ideas of Danish existentialism. By doing
so he freely decided to introduce a strange new idea into physics, the idea that
fundamental problems cannot be solved and that one has to live with dilemmas!

Complementarity and the uncertainty relations can be addressed by distin
guishing clearly between ontological and empirical statements, which are easily
confused in quantum mechanics. De Broglie, for instance, had a theory-the
double solution(33)-that included the empirically superfluous u-wave alongside
the empirically indispensable but ontologically ambiguous \jI-function one finds
in quantum mechanics as well. The real wave u = Uo + v was the sum of the two
empirically "incompatible" elements of the quantum world, the particle Uo and
the wave v (which was proportional to \jI). De Broglie used \jI to make empirical
statements about measurements, their incompatibilities, and their statistics, and u
for such ontological statements as "the particle Uo is guided along its trajectory by
the wave v according to the guidance condition p = -Vcp." Bohm, on the other
hand, gets the only wave in his theory, the confusing \jI-function, to do the
guiding. De Broglie, whose double solution was not developed enough at the time
of the 1927 Solvay conference, did away with the real wave v and ended up
presenting a pilot wave theory in which the particle was guided by \jI, much as in
Bohm's theory. The fact that a normalized wave of manifestly statistical character
should have guided the particle caused great confusion. The theory was criticized
sharply, and de Broglie soon abandoned it.

As long as measurement is not at issue, there is nothing wrong with saying
that a quantum object "is a wave and is a particle." To make more empirical
statements, a theory about measurements, their incompatibilities, and their
statistics ought to be invoked. The most developed at the moment is quantum
theory, according to which an apparatus indicating that something is a wave
cannot also indicate, at the same time, that it is a particle as well. Or one may
possibly appealing to the EPR reality criterion-wish to assert that "a particle's
position is contained in the infinitesimal interval Xo~ Xo + dx" and "a particle's
momentum is contained in the infinitesimal interval Po ~ Po +dp" (where x and
p are conjugate). Why not? Quantum mechanics indicates, however, the incom
patibility of the empirical statements "the position of a particle is measured to be
within the infinitesimal interval Xo ~ Xo + dx", "and, at the same time, the
momentum of a particle is measured to be within the infinitesimal interval
Po ~ Po +dp." No apparatus can measure both at the same time with that
precision.
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Chapter 3

Local Realism versus Quantum
Nonlocality

The conceptual foundations of the paradox of Einstein, Podolsky, and Rosen will
now be examined in greater detail. The propagation of quantum waves in
configuration space gives rise to interference effects that are incompatible with
local realism. If the point representing the positions of the particles making up a
quantum system does indeed describe a trajectory in configuration space-guided
according to the nonlocal formula p = -Vq>-it will be subject to a nonlocal
quantum potential. There are many ways, often involving inequalities, of
characterizing the nonlocal interference effects deriving from the configuration
space description. One can distinguish between weak inequalities, deduced from
local realism alone and never violated experimentally, and strong inequalities,
which are easier to violate because they depend on further assumptions regarding
detection. The more general probabilistic treatment, which rests on a general
ization of the deterministic criterion used by Einstein, Podolsky, and Rosen for
the identification of elements of reality, will also be dealt with.

3.1. NONLOCALlTV, INTERFERENCE, QUANTUM POTENTIAL

The origins of the EPR paradox can be found as far back as Schrodingers
1926 papers on wave mechanics, in which quantum waves were made to propagate
in configuration space. Bell's inequality is, in a sense, violated by interference terms
associated with such waves, which can "entangle" particles no matter how far apart
they are. Again, the interference does not take place locally, in ordinary three
dimensional space, but in abstract tensor product or configuration spaces.

75
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3.1.1. The Quantum Potential in Configuration Space

The matter of whether violations of Bell's inequality can carry a signal was
discussed in 1978 by Bohm and Hiley,(I) who commented: " If it can, we will be
led to a violation of the principle of Einstein 's theory of relativity, because the
instantaneous interaction implied by the quantum potential will lead to the
possibility of a signal that is faster than light."

The whole quantum-mechanical treatment of distant systems does contain
this difficulty, at least in principle . Bohm and Hiley showed that the two-body
Schrodinger equation

(1)

(2)

and

as 1 2 1 2
ai+;(V1S) +;(V2S) + V(X\X2 t) + Vq(X\X2t) =0 (3)

where R2 is the probability density, V(x\x2t) is the external and relative potential
of the two particles, and

v = _~(V?R+V~R)
q ~ R R ~

VI and V2 are the gradient operators for particles 1 and 2. Now Eq (2) evidently
describes the conservation of probability in the configuration space of the two
particles. Equation (3) is a Hamilton-Jacobi equation for the system of two
particles, acted on not only by the classical potential V, but also by the quantum
potential ViX\X2t).

The latter potential has peculiar nonlocal properties, since

a. It cannot be expressed as a universal function of the coordinates, as with
usual potentials, because it has, in general , a different spatial dependence
for different functions R.

b. It depends on 'it(X\X2t) and therefore on the quantum system as a whole;
since R = R(x\x2t) , the force acting on particle 1 depends on the
instantaneous position of particle 2, and vice versa.

c. It does not, in general, produce a vanishing interaction between the two
particles when Ix\ -x21 ~ 00.

Nonlocality clearly disappears for product states. Indeed from 'it = 'itI'it2 it
follows that
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and the quantum potential (4) becomes

V __~ (ViRt(x.) + V~R2(X2))
q - 2m R.(x.) R2(X2)
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so that each particle is now acted on by a force depending only on its own
position.

Bohm and Hiley embrace the nonlocal effects that, in their view, constitute
the essential new quality implied by quantum theory and try to develop a physical
picture of the world based on the notion of "unbroken wholeness", which they
attribute to correlated quantum systems.

Nevertheless, the problem of reconciling non local effects with relativity
remains unsolved. In another paper Hiley<2) quotes the following opinion,
expressed in 1972 by Dirac : "It [nonlocality] is against the spirit of relativity,
but is the best we can do at the present time . . . and, of course, one is not satisfied
with such a theory. I think one ought to say that the problem of reconciling
quantum theory with relativity is not solved." Incidentially, during a 175
conference in Australia, Dirac even expressed the view that Einstein's view
might ultimately prove to be correct:

There are great difficulties .. . in connection with the present quantum mechanics. It is
the best that one can do up till now. But, one should not suppose that it will survive
indefinitely into the future. And I think that it is quite likely that at some future time we
may get an improved quantum mechanics in which there will be a return to
determinism and which will, therefore, justify the Einstein point of viewY)

3.1.2. Quantum Correlations and Interference

The paradoxical aspects of quantum correlations are due to interference.
Consider a mixture offactorizable state vectors for which the state vector 1\jI1}1<t>1}
has probability PI. The correlation function for the dichotomic observables A(a)
and B(b) of the subsystems Cl and P, respectively, is given by

where

P(ab) = L PIA(al)B(bl)
I

(5)

Since the weights PI are nonnegative and sum to I, Eq. (5) is similar to the
hidden-variable expression

P(ab) = Jo. p(A)A(aA)B(bA)

and leads to Bell's inequality.

(6)
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Take, instead, a nonfactorizable state vector ITl), expressed in the polar form

The correlation function is now

P(ab) = L JP/PmA(alm)B(blm)
1m

where

(7)

A(alm) = ('itM(a)I'itm),

It is well known that Eq. (7) violates Bell's inequality. It is remarkable that (7) is,
in many ways, similar to (6): if one considers I and m hidden variables from the
purely formal point of view, one concludes that locality is satisfied [A(a) does not
depend on b, B(b) does not depend on a, the quantity JP/Pm, which could be
thought to represent a density function, does not depend on a, b]. The reason for
which (7) violates Bell's inequality is that the "density function" is not normal
ized to unity:

which is, in general , larger than unity because of the presence of interference
terms (those having I i= m). Violations of Bell's inequality are, therefore, a typical
quantum phenomenon, since they arise from interference.

3.2. FACTORIZABLE AND NONFACTORIZABLE STATE VECTORS

The distance between a nonfactorizable state vector ITl) and the closest
factorizable vector is proposed as a measure of how entangled ITl) is. It is then
shown that factorizable state vectors cannot violate Bell's inequality and that
every nonfactorizable state vector can be made to violate a Bell inequality derived
from the principles of local realism.

3.2.1. Degree of Entanglement

Let us again expand the unit vector In) with respect to the orthonormal sets
(I'itj)} and (Iq»} that give it the polar form

ITl) = L cjl'itj)lq>j)
j
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Let us assume that at least two of the coefficients c, do not vanish, so it is
impossible to write Ill} as a product. Form the projection operator

which is Hermitian and, hence, in principle, represents an observable. Clearly the
average value of PTJ for the state represented by Ill} is equal to 1.

One can then wonder by how little the average value

(8)

can differ from I, if the vector Ix} is a product lu}lv}. To establish this we must
find the maximum of (8).

To begin with,

Since the coefficients are complex, phase differences willmake this average value
satisfy

(9)

where Q is a positive number defined otherwise by (9) itself,

and

Zi = l(vl<p;}1

I:Y7 = I:>; = I
i i

(10)

(by Parseval's relation, since the ,\jfi) 's and l<p) 's form bases and lu} and Iv} are
normalized), Now since (9) is satisfied, one can look for the maximum value of

(11)

given the restrictions (l0), or since the values ofYi and Zi that maximize (II) will
also maximize

one can use Q instead. A positive real-valued function reaches its maximum at the
point its square reaches its maximum as well.
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At its maximum, Q will be insensitive to a small variation Yk<>Zk + Zk<>Yk in
YiZi, i.e.,

(12)

Such variations must obey the restrictions (10), so

(13)

and

(14)

One can then add (12), (13), and (14), respectively multiplied by 1, and by the
Lagrange multipliers 1..( and 1..2, This yields

:L (hIYk<>Zk + ICklzk<>Yk + A.IYk<>Yk + A.2Zk<>zk)
k

= :L [(ICklzk + A.IYk)<>Yk + (lcklYk + A.2Zk)<>zd = 0
k

The factors multiplying the <>Yk'S and <>Zk'S must all vanish if we regard all these
variations as independent (which is in keeping with Lagrange's approach):

Icklzk + A.tYk = 0

ICkIYk + A.2Zk = 0

(for all k)

(for all k).
(15)

Multiplying the first by Yk> the second by Zk' and subtracting the results, one has

(for all k)

whence

1..1 :L.1t = 1..2 :L zi
k k

This means that 1..( and 1..2 must be equal, since it is already known, from (10),
that the other two factors are equal. So one can change (15) accordingly, multiply
the first equation by zk> the second by Yk' and subtract, with the result

(for all k)

This means that Yk = Zk> for all k such that ICkl =1= O. Knowing this, one can
rewrite either one of Eqs . (15) :

(for all k such that Icd =1= 0)

which has as solutions eitherYk = 0 or 1..( = -ICkl. The parameter 1..( can assume
this value for those k (in the set 1M of the values of k) for which ICkl assumes its
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maximum M (and it shall be demonstrated presently that the maximum has to be
taken). Therefore one can choose the solution

k E 1M A. I = -M
k ¢. 1M Yk = 0

Hence,

and above all

Q= L: ICiLv7 =M L: YT =M
iE/M iE/M

The largest value that Q can reach will be obtained by taking

M = max lcj]
k

Notice that , as Ill} is normali zed,

M < 1

(16)

(17)

(18)

if more than one k exists for which ICkl i= 0 (namely if the state vector is not
factorizable ). Therefore

(xIPTl lx) s (m.r ICklY < I (19)

because of (8), (9), (16), and (18).
The degree ofentanglement (cf. Shimonyv" parameter € can thus be defined

as

€ = I - (mtxIckly
and characterizes the distance between an entangled state and the closest
unentangled one.

3.2.2. Bell's Inequality and Factorizable State Vectors

A remarkable property of mixtures of factorizable state vectors is that they
always satisfy Bell's inequality, as first shown by Capasso, Fortunato, and
Selleri .(5) Consider an ensemble E of N quantum pairs (ex, ~) and suppose they
are described by factorizable state vectors I'I\} l<I>k } with frequencies
nk/N (k = 1,2, . . .). So in the ensemble E,

1'P1}I<I>I} applies to nl pairs

I'll2}1<I>2} applies to n2 pairs

(20)
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and

Suppose the dichotomic observables to be measured on a. and ~ are
described by operators A(a) and B(b), respectively, so the operator corresponding
to the product of the joint measurements is A(a) I8l B(b). The correlation function
predicted by quantum mechanics is then the average ofthe observable represented
by the latter operator over the mixture (20), so

P(a, b) = LPk ('I\<I>k IA(a) I8l B(b)I'I\<I>k)
k

where

LPk = 1
k

(21)

The four correlation functions figuring in Bell's inequality can then be written

P(a, b) = LPkAi3k
k

P(a, b') = LPkA/J"
k

P(a'. b) = LPkA"Bk
k

P(a'. b') = LPkA"B"
k

where

Ak = ('PkIA(a)I'I\)

A" = ('PkIA(a')I'Pk).

s, = (<I>kIB(b)I<I>k)

B" = (<I>k IB(b')I<I>k)
(22)

(23)

These last quantities are expectation values of operators with eigenvalues
± 1. Therefore,

IAkl:5 1; IA"I:5 1; IBk l:5 1; IB"I:5 1

which hold for all k.
Inserting (21) into the Ihs of Bell's inequality, one obtains

~ = IP(a, b) - P(a. b') +P(a'. b) +P(a'. b')1 :5 LPk~k (24)
k

where



3.2. FACTORIZABLE AND NONFACTORIZABLE STATE VECTORS 83

and hence

11k ::: 2 (25)

Two real numbers x and y, such that Ixl ::: I and Iyl ::: I, always satisfy Ix - yl +
Ix +YI ::: 2.

If (25) is inserted in (24) one finally obtains

11 ::: 2

which is Bell's inequality.

3.2.3. Bell's Inequality and Nonfactorizable State Vectors

It is well known that Bell's (weak) inequality derived from local realism alone
is contradicted by quantum-mechanical predictions for certain nonfactorizable state
vectors of correlated spins or polarizations. The following question will now be
considered: Is it possible to show that any given nonfactorizable state vector of
correlated quantum systems necessarily implies a violation of Bell's inequality?

Consider the general form for a nonfactorizable state vector of a composite
system given by

Ill} = L.fi)~i} Is)
ij

(26)

where the l~i}'S and Isj}'s denote complete orthonormal sets of eigenstates
corresponding to the correlated subsystems a and ~, respectively.

The unit vector Ill} can be written in the form

Ill} = L JP/lvi}IYi}
i

(27)

where the Pi'S are real and nonnegative (phases can always be absorbed by the
basis) . Now to show that, at least in principle, observables can always be chosen
in such a way that Bell's inequality is violated for any state vector of the type
given by Eq. (27), consider pairs of noncommuting dichotomic observables (with)
eigenvalues ± I) Ds, D's pertaining to a and Dr, D~ pertaining to ~, with the
following definitions for them:

Ds = 2Ps-I

Ds=2Ps-I
where the projection operators

Dr = 2Pr - I

D~=2P~-1
(28)

Ps = Iv1}(vtl

Pr = IY,}(Yti

Ps= [a,lv,} + a21 v2} ][af (VII + a1'(v21l

r; = [~t1 Yl) + ~2IY2}][~f(Yti + ~1'(Y21]

(29)
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and where IcrII2+ Icr212 = I = 11311
2+ 113 11

2. Note that, for simplicity, the observ
ables above have been defined on a two-dimensional subspace of the larger
Hilbert space containing 111), but this is enough. Assume that both PI and P2 are
nonzero, which can be done without loss of generality, since in (27) there are
certainly at least two coefficients Pj #- O.

Using Eqs. (27), (28), and (29) it is straightforward algebra to obtain the
following results:

(11 IDs i8l Drill) = I

(lllD~ i8l Drill) = (1 - L) + Lf1cr

(11 IDs i8l Drill) = (1 - L) + Lf1f3 (30)

(lllD~ i8lDrlll) = (I - L) + Lf1crf1f3

+ Jr-(L-2-_-f1-p-2-)(-I-_-f1-cr-2)-(-1 ---.1-13-2) cos(<!l ex + <!l~)

where

L = PI + P2

f1p = PI - P2

f1cr = Icr l1
2 - Icr212

.113 = l/3d
2

- 11321
2 (31)

(35)

(34)

(36)

and <!lex' <!l~ are the relative phases of crl' cr2 and of /31 and 132, respectively.
Recall that the standard form of Bell's inequality in the present notation is

-2 .s (Ds i8l Dr) - (D~ i8l Dr) + (Ds i8l Dr) + (D~ i8l Dr) .:::: 2 (32)

A condition for the violation of Bell's inequality is

I - (1 - L) - Lf1cr + (1 - L) + Lf1f3 + (1 - L) + Lf1crf1/3

+ J(L2
- f1p2)(1 - f1cr2)(1 - f1f32)cos(<!l ex + <!l~) > 2 (33)

and reduces to

( )
L I + f1cr I - .113

cos <!l ex + <!l > ---,=:::;r:====::-;:::==:=:;;:-r========
p JL2

- f1p2.JI - f1cr2JI _ .1132

according to Eqs. (30)-(32).
To show that condition (34) can be satisfied by an appropriate choice of

observables, assume that <!lex and <!l ~ are chosen such that

cos(<!lex + <!l~) = I

which is clearly possible since P's and Pr,and hence <!l ex and <!l~, are arbitrary.
Then the square of (34) reduces to the form

I _ f1p2
> I + f1cr I - .1/3

L2 1 - f1cr 1+ .113
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Rememberiing that ~p2 < ~2 because in (31) both PI and P2 are positive and
nonzero, it is evident that condition (36) can be easily satisfied by choosing MJ.
and ~~ appropriately within the intervals -I ::s ~Cl ::s 1, -1 ::s ~~ s I. For
example, if ~p2 = 0, take -~Cl = ~~ = 0.5, but if ~p2 :f. 0 take ~Cl = 0 and
~~ = ~p2 /~2. In the latter case (36) becomes

~p2 I _ ~p2/~2
I - -- > ---'-'---=-

~2 I + ~p2/~2

which is clearly satisfied.
This completes the proof of the theorem whose statement can be formulated

as follows. For any given nonfactorizable state vector of correlated quantum
systems it is always possible to choose observables in such a way that Bell's
inequality is violated by quantum-mechanical predictions.

Recalling that factorizable state vectors necessarily satisfy Bell's inequality,
it can be concluded that nonfactorizable state vectors are necessary and sufficient
for the violation of Bell's inequality. This result reinforces the notion that the
incompatibility with local realism is rooted in the use of nonfactorizable state
vectors in quantum mechanics, and though Bell's inequality does not contain all
the restrictions implied by local realism (see Section 3.5) it is nevertheless
sufficient for the purpose of displaying the incompatibility between quantum
theory and local realism with great generality.

The question as to which nonfactorizable state vectors are actually realizable
and which are the relevant observables that can be found in practice for testing
unambiguously the quantum-mechanically predicted violation of Bell's inequality
is, of course, of crucial importance. Since many of the nonfactorizable state
vectors are consequences of fundamental principles used in quantum mechanics
(such as the conservation of angular momentum, invariance conditions like those
of parity and charge conjugation, symmetry properties of wave functions of
bosons and fermions), the general theorem just proved provides theoretical
support for studies in quest of suitable examples to discriminate between quantum
mechanics and local realism using Bell's inequalities .

Another form of the partial compatibility of quantum mechanics with local
realism has been found by Landau.i'" Consider the operator corresponding to
Bell's observable:

(37)

Notice that such observables can always be written in terms of projection
operators as in (28) where

P~ = Ps,
p} = PT ,

P~, = Ps,

p}, = Pro
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so that

(38)

For example,

2 ( )2 2Ds = 2Ps - I = 4PS - 4Ps + I = I

Using (38) it is easy to show that

r- = 4 + [Ds' Ds,][Dr, DT']

Now suppose that

[Ds' Ds'] = 0 and/or [Dr' DT'] = 0 (39)

In such cases r- =4. Let rx;)be an eigenvector of r with eigenvalue Yi' Clearly

r 2
lxi) = Y~IXi)

But r- = 4 when (39) is satisfied, so Y~ = 4, and therefore Yi = ±2. Thus, the
eigenvalues of rare ±2. Expanding a general vector ,"') with respect to a
complete orthonormal set Xi of eigenvectors of I' , we have

("'WI"') = L q cj(xiWIXj) = L q CjYj(xilx)
ij ij

= L Icil2Yi s 2 L Ic;i2 = 2
i

Therefore Bell's inequality cannot be violated when the dichotomic observables
satisfy (39).

3.3. PROBABILISTIC LOCAL REALISM

In this section the probabilistic foundations of local realism are developed .
In place of the EPR reality criterion one has to introduce a probabilistic reality
criterion that attributes real physical properties to statistical ensembles for which
probabilities can be predicted .(7) These "real physical properties" are similar to
the propensities of Popper's realism.i" When the locality assumption is added,
one obtains a very general formulation of local realism that leads, for example , to
a new proof of Bell's theorem .

3.3.1. Propensities and Probabilities

Let Sand T be two sets of N objects of the same kind (photons, neutrons,
kaons, . . . ):

(40)
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(41)

The objects are produced in pairs : a.\ with ~l' a.2 with ~2" '" a.N with ~N' The
different pairs are totally independent of one another. Measurements of the
dichotomic physical quantities A(a) = ±l and B(b) = ±l (a and b are experi
mental parameters) are performed on the a./s of S and on the ~;'s of T,
respectively, when they are far apart.

Subsets of, say, S characterized by certain properties can be considered, such
as (a.;: A(a) = Ill, where A(a) = Il means that a measurement ofA(a) on a.; gives
the result Il = ±l. Since the objects are produced in pairs, subsets of S can also
be defined with reference to T, so we could consider (a.;: B;(b) = vI, for instance.
Frequencies such as

1
f(a±) = N cardl«. : A;(a) = III

(card{~l is the number of elements in the set (~}) can be defined as well.
Einstein, Podolsky, and Rosen identified an element of reality in a single

quantum system when the result of a measurement could be predicted with
certainty, without disturbing the system. Because one is here considering the
more general case in which this certainty may not be achievable, something
weaker than an element of reality is needed. This is the propensity, to identify
which the following probabilistic reality criterion (PRC) shall be adopted. This is
the natural generalization of the criterion used by Einstein, Podolsky, and Rosen :

Probabilistic Reality Criterion. Given a set S of N o-particles, if one can

1. Predict that measurements ofA(a) on the a.;'s of a subset S' ofS will give
the results +I and - 1 with the probabilities (frequencies) f(a+) and
f(a _), respectively

2. Predict the population N' of S' (0 < N' S N)
3. Make all these predictions without disturbing the o-objects of Sand S' in

any way

then an objective, real propensity Aa belonging to S' is assumed to fix the
probabilities:

(42)

The propensities and the corresponding frequencies associated with subsets of S
will generally be different from those of the entire set.

Popper considered competing propensities for different outcomes of a
process (e.g., of a measurement). Here he would probably have introduced two
different propensities Aa± for the two outcomes A(a) = ±l, but this is not
inconsistent with the use of the symbol Aa , which can be written

Aa = P"a+' )"a-l
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as the set of both propensities. Hence, one can view the frequency j'(c.) of the
outcome A(a) = +1, for instance, as the consequence ofboth propensities present
in S' and represent this as before with Eqs. (42).

This PRC should not be viewed as an attempt to "define" propensities. Their
existence is being postulated and a sufficient, but not necessary, condition for
their identification given. That is, propensities could exist without being capable
of identification by means of the criterion. More or less the same applies to the
deterministic criterion of Einstein, Podolsky, and Rosen. This PRC, then, will be
applied to the subsets S(b±).

Consider an EPR experiment in which there are two observers: 0(1., who
measures the dichotomic observables A(a) on the a-particles of S, and 013' who
measures the dichotomic observable B(b) on the ~-particles of T (Fig. 3.1).
Measuring instruments are assumed to be perfectly efficient: every single act of
measurement produces one of the two outcomes ± 1. Now 013 's measurement on
~i' which we can assume to take place (in the laboratory frame) before 0(1. 's
measurement on Cli ' will split T into the two subsets

This division of Twill produce corresponding divisions

of Sand

of the set

of (Cli ' ~J pairs.

-, I /

••• - 0 - 0···00 •
a

l
a

2 aN / 1" PN P2 PI

• SOURCE • •5 T

•E

FIGURE 3.1. The source emits IX and Pparticles simultaneously and in opposite directions. First the
(lXI' PI) pair is emitted; then the (1X2' P2) pair; . . . finally the (IXN ' PN) pair. The set S contains all the
IX'S; the set T contains all the p's; the set E contains all the (IX. P) pairs.
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It will be convenient to use N(b±) to represent the populations of the sets
T(b±), S(b±), and E(b±); i.e.,

N(b±) = card{~; : B;(b) = ±l} = cardl«. : B;(b) = ±l}

= card{(ex;, ~;) : B;(b) = ±l}

Since the observable B(b) is dichotomic,

(43)

If the probabilities g(b±) of measuring B(b) in T are identified with the
frequencies introduced quite generally by (41), it follows that

A knowledge of previous experiments enables O~ to predict that Oct. will
subsequently find A(a) = ±l with frequencies f(a±lb+) in S(b+), and
A(a) = ±l with frequencies f(a±lb_) in S(b_). Again,f(a±lb+) in S(b+) and
f(a±lb_) in S(b_) are, in general, different from the probabilitiesj'(cj) of finding
A(a) = ±l in the whole set S. Observer Oct. , finding the very frequencies
predicted by O~, concludes that these frequencies are generated by a real feature
of S(b±), namely a propensity. One can write

f(a±lb+) =f[a±, Aa(b+)]

f(a±lb_) =f[a±, Aa(b_)]
(44)

to indicate the dependence of the frequenciesj'{cj ) on the propensities Aa(b±) of
the subsets S(b±). Now the dependence of Aa(b±) on the splitting of T is
established at the birth of the pairs. The notation Aa(b±) only means that the
sets S(b±) and their propensities are defined by the (potential) measurement of
B(b) and is not meant to imply the existence of a distant coupling of T and S
capable of modifying Aa . Indeed the following locality assumption can be added
to the PRe:

Locality Assumption. Measurements performed on the ~-objects of T do
not in any way generate or modify the propensities of the ex-objects ofS, and vice
versa .

An "arrow of time" assumption could be added at this point, but it is best
not to insist on this here. The propensities Aa(b±)are therefore assumed to be real
properties of subsets S(b±) of S even if no measurement of B(b) is performed.
Not to admit this would imply that the propensities for the ex-particles are created
via some action-at-a-distance mechanism by the measurements on the ~-particles,

which is precisely what the locality assumption excludes .
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3.3.2. Quantum Sets Are Not Homogeneous

Other probabilities can similarly be introduced for a different splitting of E
into E(b~) and E(b'-) arising from actual (or possible) measurements of B(b') on
the ~-particles. Naturally S also splits into S(b~) and S(b'-). Considering once
more the observable A(a) of the ce-particles, the PRC can be applied to the case at
hand; hence,

f(a± Ib~) = f[a±, Aa(b~)]

f(a±WJ =f[a±, Aa(b'-)]

where the first frequency holds for S(b~) and the second for S(b'-). Different
subsets generally have different probabilities, and Aa(b~) will thus be different
from Aa(b+) because different effects (probabilities) imply different causes
(propensities) . Clearly

(46)

(47)

and therefore S(b~), a subset of S, will consist of elements of S(b+) and S(b_).
By virtue of (46),

S(b~) = S(b~) n S = S(b~) n [S(b+) U S(b_)]

and since S(b+) and S(b_) are disjoint it follows

S(b~) = [S(b~) n S(b+)] U [S(b~) n S(b_)]

It can be demonstrated by reductio ad absurdum that these sets are generally not
homogeneous; i.e., they may have subsets with different propensities and
frequencies . Suppose S(b+) and S(b_) are homogeneous, which means their
frequencies for the outcome A(a) = +1 apply to their subsets S(b~) n S(b+) and
S(b~) n S(b_) as well. Suppose, furthermore, that a fraction y (0 .s y ~ 1) of the
elements of S(b~) are in S(b~) n S(b+), with 1 - y in S(b~) n S(b_). The

FIGURE 3.2. Graphic representation ofthe set S of IXparticles (large oval) and of its splitting into two
subsets . S±(b) [S±(b')) arise from the possible measurements of B(b) [B(b')) on the correlated J3's.
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frequency of the outcome +1 for S(b~) is the weighted average of the
corresponding frequencies associated with the disjoint subsets that make it up.
Here these frequencies are assumed to be the same as those of sets ofwhich they
are proper subsets; i.e., they are assumed to be

and (48)

which are the frequencies of S(b+) and S(b_). Were those the right frequencies, it
would follow that

so f[a+ , Aa(b~)] would lie in the interval fromf[a+, Aa(b+)] to f[a+, Aa(b_)].
The same can be done with S(b'-), which can also be represented as a union

of subsets of S(b+) and S(b_), which subsets can again be assumed to have the
same frequencies (48) as S(b+) and S(b_) . The frequency of the outcome
A(a) = +1 for S(b'-) would then, much as before, be a weighted average of
the frequencies of the subsets of which it is the union:

where a fraction y' of the elements of S(b'-) are also in S(b'-) n S(b+), and a
fraction I - y' in S(b'-) n S(b_). Hencef[a+, Aa(b'-)], too, would be bounded on
either side by the same frequencies (48). But the fact thatf[a+, Aa(b~)] should be
bounded by f[a+, Aa(b±)) suggests a groundless asymmetry between band b',
which are entirely arbitrary and can be interchanged. These above frequencies
could a priori be constant, but that is certainly not always the case in nature.
Therefore S(b±) cannot in general be homogeneous.

That frequencies f[a±, Aa(b±)] can vary with b means that they will not
always be equal to those associated with the entire set S, and hence suggests in
itself an inhomogeneity of S.

The foregoing considerations are general enough to apply to sets S, T, and E
of any kind. To apply them to quantum systems in particular, take the quantum
observables

3

A(a) = {T'" = L: (j;a;,
;=1

A 3
B(b) = T·b = L:LA

j =l

where a, and Lj (i ,j = 1,2,3) are the Pauli matrices for twoA spin-4 particles, CJ.

and ~; ai are bj the components of the unit vectors " and b. The dichotomic
observables A(a) and B(b), which have eigenvalues ±l, represent the spin
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components of particles a. and ~ along the directions a and b. The vector
describing the singlet state can be written

I
115 = j2[u(b+)v(b_) - u(b_)v(b+)]

where

Since it is rotationally invariant, 115 will be an eigenvector of (J" b+T'b
belonging to the eigenvalue 0 regardless of what b is.

Suppose next that T'bis measured on the set T of ~ particles: according to
quantum theory, the results ± I will be found with the same frequency !. In the
notation of Eq. (43),

N(b+) = N(b_) =N /2

These populations N(b±) refer not only to the subsets T(b±) but also to E(b±)
and S(b±). According to quantum theory, the "reduction of the state vector" takes
place during measurement and the new states

(49)

(50)

must be considered. It is now easy to calculate the quantum-mechanically
predicted probabilities f(a±Ib±) of the last section. For example,

fQM(a+lb+) = (u(b_)v(b+)I(l + (J' ·a)/2Iu(b_)v(b+)) = sin2e; b)
where a - b is the angle between the directions a and b. More generally,

The main point deduced in the last section from probabilistic local realism is that
the conditional probabilities must emerge as necessary consequencies of objec
tively existing propensities. Of course propensities are always there, but prob
abilities become real frequencies only when they are measured. From Eq. (44),

fir(a+lb+) =f[a+. A.a(b+)] =F(a - b)
fir(a+lb_) =f[a+. A.a(b_)] = I - F(a - b)

where F is the (as yet unknown) prediction of probabilistic local realism and the
dependence on a- bcan be justified on the basis of rotational invariance. Bell's
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theorem, whose validity in the present context will be shown later, does not allow
F to equal the quantum-mechanical prediction. It follows from Eq. (45) that

Jir(a+lb~) =f[a+, Aa(b~)] = F(a - 1,')

Jir(a+ W-J = f[a+, AaW-J] = I - F(a - 1,')
(51)

Equation (47) shows that S(b~) splits into two subsets. By assuming the
homogeneity of S(b±), it would now follow, as a consequence of the foregoing
reductio ar~ument, that F(a - h) is bounded on either side by F(a - h) and
1 - F(a - b). However, it will not lie in this interval for arbitrary values of
a, b, b' if the predictions [Eqs. (50) and (51)], while respecting Bell's inequality,
are even vaguely similar to the quantum-theoretical expressions. Therefore, the
subsets S(b±) cannot be homogeneous. Since these subsets have been associated
with the quantum-mechanical states u(b±) [see Eq. (49)], one must conclude that,
in an EPR situation, the eigenvectors of the spin observables cannot represent
homogeneous ensembles. This conclusion follows rigorously from the properties
of the singlet state; a more general validity, for all states ofspini particles, can be
conjectured.

This is a generalization of the incompleteness intended by Einstein,
Podolsky, and Rosen. Von Neumann showed'?' that the assumption of quan
tum-mechanical completeness implies that pure states describe homogeneous
ensembles (which means that every subset is represented by the same state). We
have come instead to the conclusion that pure states must describe inhomoge
neous ensembles, if our assumptions concerning realism (propensities) and
locality are true in nature. Hence, if probabilities belonging to the sets S(b±)
for which they are predicted are consequences of local propensities, they must
result from averages over other probabilities, in general different for different
subsets of S(b±), but constant within every such subset. These probabilities
of homogeneous subsets of S and Twill be dependent on local propensities and
will therefore be totally independent of what is eventually measured on the other
set of particles (T and S, respectively). This is a consequence of the locality
assumption.

3.3.3. Homogeneous Sets and Probabilities

Recalling how S was split into S(b+) and S(b_) even without measurement
of B(b), it becomes clear that the same splitting applies to E, which consists of S
and T (Fig. 3.3). Again, S(b+) and S(b_), as well as their union S, cannot be
homogeneous with respect to the probabilities of finding A(a) = ±I ; and
similarly-inverting the roles of the \/.- and ~-particles-with respect to the
probabilities of finding B(b) = ±1 in T.



94 CHAPTER 3. LOCAL REALISM VERSUS QUANTUM NONLOCALITY

FIGURE 3.3. Graphic representation of the set E of (a. , ~) pairs (dark oval) and of its splitting into
two subsets. E±(b) [E±(b')) arise from the possible measurements of B(b) [B(b')) on the ~'s . The
corresponding splitting of the set S of a. particles into two subsets, S±(b) and S±{b') is also shown, as
in Fig. 3.2.

Recalling the results of the previous section, consider a splitting ofE (arising
from a similar splitting ofS) into the subsets 01 (a), 02(a), . .. , Or(a), where o;(a)
(i = 1,2, .. . , r ), by definition, homogeneous for the local probabilitiesJ;(a±, Aa )

of obtaining A(a) = ± I, respectively, and Aa is the local propensity for the same
results, which has now no dependence on what is done with the Ws (Fig. 3.4).
Consider also a different splitting of E (arising out of a similar splitting of 1) into
'tt(b) , 't2(b), . .. , 'tib) , where 'tib) is, by definition, homogeneous for the local
probabilities g/b±, Ab) of obtaining B(b) = ±I(j = 1,2, . . . , s), and Ab is a local
propensity, independent of what is done with the r:t. 'So Obviously, the union of
these subsets must give E in both cases; that is,

01(a) U 02(a) U U or(a) = E

't ((b) U 't2(b) U U 'tib) = E
(52)

FIGURE 3.4. Graphic representation of the set E of (n, ~) pairs (large oval) and of its splitting into r
subsets crl(a), cr2(a), ... , cr,(a) that are homogeneous for the probabilities of the results ±l of the
observable A(a) measurable on the set S of a. particles.
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The dependence of (Jj on a and T.j on b reflects the fact that a subset that is
homogeneous for an observable (e.g., A(a)] is not expected, in general , to be
homogeneous for a different observable [e.g., A(a')] .

One can, however, easily find smaller subsets that are homogeneous for two
observables. For A(a) and B(b) they are

E'A(a , b) = (Jj(a) n T.ib)

where the single index Ahas been chosen, for simplicity, to correspond bijectively
to the pair of indices (i ,j). Because i can assume r values andj can assume s, the
index A can assume rs different values. Notice that (Jj(a) [T.ib)] remains
homogeneous for A(a) [B(b)] no matter what is measured on the ~- [Cl-] objects.
This is a consequence of the assumption of separability.

This can be generalized to an arbitrary number of observables of Cl and ~ .

Considering m values (aI ' az, .. . am) of the argument of A(a) and n values
(b(, bz' . .. , bn) of the argument of B(b), the following subsets of E can be
introduced that are homogeneous for the probabilities of the values ± I of the
indicated observable:

(J I (a() , (Jz(a(), , (Jrl (al)' all homogeneous for A(al)

(JI (az), (Jz(az), , (Jr2 (az), all homogeneous for A(az) (53)

(JI (am)' (Jz(am), , (Jr
m
(am)' all homogeneous for A(am)

and

T.(b l), T.Z(bl), . .. , T.sl(b l), all homogeneous for B(b})

"C(bz), "Cz(bz), · ·· , "Cs2(bz) , all homogeneous for 1!(bz) (54)

T.I (bn), T.z(bn), . . . , T.sn(bn), all homogeneous for B(bn)

The homogeneity of the these sets has the usual meaning: all the subsets of (JI (al)
have the same probabilitiesfj (al ± , Aa l ) for the results A(a() = ±I, where A

a l
is a

local propensity ; all the subsets of (Jz(al) have the same probabilitiesjjtc, ±, A
a l

)

for the results A(az) = ± I, and so on. Clearly the union of the sets of every line
of expressions (53) and (54) always gives E, much as in Eqs. (52).

By means of suitable intersections, one can define smaller subsets in which
all the observables considered have constant probability. One can write

for a typical subset homogeneous for all the probabilities of the ± I results of the
m + n observables considered. The single index Aused in the preceding equation
corresponds bijectively to the set of indices {iI' iz' .. . , im ,jl ,jz, . . . ,jn}. The
number tim, n) of such sets can easily be calculated; i l can be chosen in r\
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different ways, ... , im in rm,jl in 51' ••. .i, in 5m all choices being independent.
Therefore

tim, n) = rtr2 ... rm5152 •• ·5n

Notice, however, that t(m, n) is in general expected to change if some arguments
ai' .. . , b; are modified; this is clear from the notation.of Eqs. (53) and (54),
where 51 [the number of subsets ofE homogeneous for B(b l ) ] has the same index
as b l , precisely because they depend on one another and a modification of b l can
produce a change in 51 ' So the set I of indices A[set of integers from I to t(m, n)]
depends on the arguments of the observables:

(55)

The notation has been simplified by the introduction of a "vector" z having as
m + n components the arguments of the observables, given by

The homogenous subsets and their populations can then be written

E")..(z) = E")..(al' .. . , am'bl , .. . , bn )

and

(56)

(57)

(58)

This simplified notation will soon prove useful.
The basic probabilities, which are all constant for pairs belonging to a subset

E")..(z), are

and

h(at±, A0 1) ,

h(a2±' Ao) '

g")..(b l ±, Ab),

g")..(b2±, Ab),

probabilities for A(a) = ±1

probabilities for A(a2)= ±1

probabilities for A(am) = ±1

probabilities for B(b() = ±l

probabilities for B(b2) = ±1

probabilities for B(bn) = ±l

(59)

(60)

Of course the probabilities h belong to the ex-particles and the g").. to the ~

particles. Each of them depends only on the propensity of the measured
observable. These propensities are now assumed to be strictly local. Thus, Ao )

does not depend on the particular b, that could be measured on the ~-particles or
even on whether a measurement is made at all on that side. This property of the
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propensities is a consequence of the homogenous nature of the sets E)..(z} once the
locality assumption has been made.

It is important to stress that the present formulation of locality is strictly
analogous to the quantum-mechanical locality ofprobabilities (which is known to
hold despite the overall nonlocal nature of the theory) . This formulation of
locality is only applied to a wider set of probabilities.

An important feature of quantum probabilities is expected to hold for (59)
and (60) as well: iff(all±} is measured in a set S, this may render it impossible to
measure f(av±}, with v =I 1.1, because the observables A(all} and A(av} are
generally incompatible; similarly for g(bcr±} and g(bt±} in a set T if rr =I t .

Obviously if one writes

(61)

then

and p)..(z} is the "statistical weight" of the subset E)..(z} in the full set E.

3.3.4. New Factorizable Form of Joint Probabilities

The definition of Eq. (61) is useful for calculating all types of probabilities
in the set E, for example, those needed for a new proof of Bell's theorem. These
are typically joint probabilities for observations carried out on correlated systems.
Considering the joint probabilities for A(all} = ± 1 and B(bv} = +1, one has

(()(all±,bv+ ) = L p)..(z}Q)..(a ll ± ,bv+ }
)..EI

(62)

where the index A indicates, as before, that the probability is calculated in the
homogeneous set E)..(z}. One can obviously apply Bayes' formula and write

(63)

where g)..(bv+' Ab) is as in (60) and (())..(all±,Aa Ibv+) is the conditional
probability in E)..(z} of A(all} = ±l, given that B(bv> = +1. One can also say
that (())..(all±, Aa~lbv+) is the probability of A(all} = ±l in

(64)

because it has been concluded that a set E(bv+ } with the right properties exists if
B(bv} is not measured. Remember now that E)..(z} is homogeneous, meaning that a
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probability valid for all of E,..{z) applies to any part of it as well, for example, to
the intersection (64). Remembering Eq. (59), this gives

mA(all ±, Aa~ Ibv+) =h..{a ll ±,Aa) (65)

Insert ing Eq. (65) in Eq. (63), one gets

QA(all ±,bv+) = h.(a ll ±, Aa~)gA(bv+ , Ab)

and consequently, from Eq. (62), it follows that

m(all± ,bv+) = L PA(z}fA(all ±, Aa~)gA(bv+, Ab) (66)
AE/ (Z)

Because the argument is symmetrical in + and -, we also have

m(all ±,bv-) = L PA(z}fA(all ±, Aa~)gA(bv-, Ab) (67)
AE/(Z)

The correlation function P(all , bv ) is, by definition,

P(all , bv) = m(all +,bv+ ) - m(all +,bv-) - m(all - , bv+ ) + m(all - , bv-)

= L PA(z)p(a ll , A)q(bv' A) (68)
AE/ (Z)

where

p(all , A) =h.(a ll+,Aa) - h.(a ll - , Aa)
q(bv' A) = gA(bv+' Ab) - gA(bv-' Ab)

(69)

In p and q the propensities have not been explicitly indicated.
The joint probabilities [Eqs. (66) and (67)] look like Clauser-Home

factorizability formulae.i'?' with the index A assuming the role of the hidden
variable. There are, however, important differences because now the parameters
of the observables in question enter the probability density PA(Z) [remember
(58)]. This does not imply the introduction of any nonlocality because, in
principle, all conceivable observables should enter PA(Z). In practice, however,
one can take into account only the observables relevant to the set of correlation
functions measured in the experiment considered. A similar situation has been
described by Wigner'l!' in his deterministically based proof of Bell 's theorem,
reviewed in the first chapter.

In spite of this dependence, it is very easy to deduce from Eqs. (66) and (67)
the usual inequalities of Bell type. It is interesting to notice that it was never
necessary to introduce joint probabilities for incompatible observables, described
in quantum mechanics by noncommuting operators. Observables like A(all ) and
B(bv) refer, instead, to two different objects and are therefore always compatible,
so the previous obstacle does not exist and the joint probabilities [Eqs. (66) and
(67)] are fully mean ingful.
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It has been shown'! " that the inequalities used for the experimental study of
the Einstein-Podolsky-Rosen paradox are of two different types:

Weak inequalities, like Bell's original inequality, deduced directly from the
principles of local realism . They would disagree with the empirical predic
tions of quantum theory only in the case of nearly perfect instruments, but
are entirely compatible with such predictions for all performed experiments,
owing to the low efficiency of photon detectors.

Strong inequalities, deduced with additional assumptions (in the sequel), are
typically 20-30 times stronger than the weak ones, in the sense that they
restrict the same measurable quantity to an interval 20-30 times smaller. The
strong inequalities are violated by the predictions of quantum theory in all
experiments that have been published.

The additional assumptions used by different authors are slightly different
from case to case, but they always lead to exactly the same consequences. For
example , the first assumption of this kind, made by Clauser, Home, Shimony, and
Holt(1 3) in 1969, was the following :

Given a pair ofphotons emerging from two regions ofspace where two polarizers
can be located. the probability oftheir joint detection from two photomultipliers
does not depend on the presence and the orientation of the polarizers.

It is important to stress that these additional assumptions are completely arbitrary
and do not rest on any fundamental physical principle. Furthermore, there is no
experiment to test them independently of local realism.

3.4.1. Weak Inequalities

To prove the weak Bell-type inequalities one can begin with the elementary
Clauser-Home lemma:(IO) If

osx,x' sX (70)

and

os y, y' s y (71)

then

-XY S r SO (72)

where

r = xy - xy' +x'y+x'y' - x'Y -Xy (73)
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TABLE 3.1. The Quantity r [defined in (73)]
Calculated at the 16 Boundary Points

x x' y y' r

I 0 0 0 0 0
2 0 0 0 y 0
3 0 0 y 0 -XY
4 0 0 y y -XY
5 0 X 0 0 -XY
6 0 X 0 Y 0
7 0 X Y 0 - XY
8 0 X Y Y 0
9 X 0 0 0 0

10 X 0 0 y -XY
II X 0 Y 0 0
12 X 0 Y Y -XY
13 X X 0 0 -XY
14 X X 0 Y - XY
15 X X Y 0 0
16 X X y y 0

Since r is linear in each ofthe variables x ,x ,y,y, its maximum and minimum will
lie on the boundary, where these four variables take their extreme values. Looking
at (70) and (71) one sees that the boundary consists of 16 points. The value of r at
these points are given in Table 3.1. One sees that r assumes the values 0 and-XY
eight times each, and no other values, so inequality (72) must be satisfied.

The following notation will be used:

E.. == Ex(z) is the homogeneous set defined in (57).

T(a, A), T(a' , A) are the probabilities of the first photon, belonging to Ex,
being transmitted in polarizers with axes a and a', respectively.

T2(b, A), T2(b' , A) are the probabilities of the second photon, belonging to
Ex, being transmitted in polarizers with axes band b', respectively.

R1(a, A),R((a', A) are the probabilities of the first photon, belonging to Ex,
being reflected in two-way polarizers with axes a and 0', respectively.

R2(a, A), R2(o' , A) are the probabilities of the second photon, belonging to
E.., being reflected in two-way polarizers with axes a and a', respectively.

Dr(a, A), Dr(a' , A) are the probabilties of the first photon, belong ing to Ex,
being detected by a photomultiplier once it has been transmitted in
polarizers with axes a and 0', respectively. For one-way polarizers the
superscript T will be dropped .
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Dr (b, A), Dr (b' , A) are the probabilities of the second photon, belonging to
E"" being detected by a photomultiplier once it has been transmitted in
polarizers with axes band b', respectively. For one-way polarizers the
superscript Twill be dropped.

Df(a, A), Df(a' , A) are the probabilities of the first photon, belonging to E""
being detected by a photomultiplier once it has been reflected in polarizers
with axes a and a', respectively.

~(b, A) ,~(b' , A) are the probabilities of the second photon, belonging to
E"" being detected by a photomultiplier once it has been reflected in
polarizers with axes band b', respectively.

D1(oo , A) is the probability of the first photon, belonging to E", and on
whose trajectory no polarizer is present being detected by the first photo
multiplier.

D2(oo, A) is the probability of the second photon, belonging to E", and on
whose trajectory no polarizer is present, being detected by the second
photomultiplier.

See Fig. 3.5 for the setup of an ideal EPR experiment.
For the density function p",(z),

L p",(z) = I
",ef(z)

where z = {a, a' , b, b'}. For one-way polarizers

y

x

J-,
FIGURE 3.5. Setup of an ideal EPR experiment. The two-way polarizers It ) and 1t2 are set with their
transmissio n axes in directions aand ii, respectively. Detectors Dij (i.j :=: 1. 2) are 100% efficient. The
source emits pairs of photons with frequencies VI and V2 in the -z and +z directions, respect ively.
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which means that the reflected path is not available. The same applies to other
axes.

The joint detection probabilities for two-way polarizers will be

ro(a+, b+) = L pj,(z)TI(a, A)Df(a, A)T2(b,A)DI(b, A)
j,e/(z)

ro(a+, b-) = L pj,(z)T](a, A)Df(a, A)R2(b, A)~(b, A)
j,e/(z)

ro(a-, b+) = L pj,(z)RI(a, A)Df(a, A)T2(b, A)DI(b, A)
j,e/(z)

ro(a-, b-) = L pj,(z)R] (a, A)Df(a, A)R2(b,A)~(b, A)
j,e/(z)

There will be similar expressions for axes (a, b'), to', b), (a', b') . Let us also
define the correlation function

pea,b) = ro(a+, b+) - ro(a+, b-) - ro(a- , b+) + ro(a-, b-) (75)

The single-particle detection probabilities are defined as follows:

II(a) = L pj,(z)TI(a, A)Df(a, A)
j,e/(z)

rl(a) = L pj,(z)R1(a , A)Df(a, A)
j,e/(z)

12(b) = L pj,(z)T2(b, A)Df(b, A)
j,e/(z)

r2(b) = L pj,(z)R2(b, A)~(b, A)
j,e/(z)

(76)

where I and r refer to transmission and reflection. There will be similar
expressions for axes a' and b'.

We can now deduce Bell-type inequalities by applying the Clauser-Home
lemma. Take, for instance,

T](a, A)Df(a, A)= x

TI(a' , A)Df(a' , A) = x'

T2(b, A)DI(b, A) =y

T2(b', A)DI(b', A) = y'

If no additional assumption is made, these last variables could assume the value 1
for some A. Therefore, one must take X = Y = I in (70) and (71), so that (72)
becomes

- 1 ::: T1(a, A)Df(a, A)T2(b, A)DI(b, A) - TI (a, A)DI(a, A)T2(b', A)DI(b', A)

+ T](a', A)Df(a', A)T2(b, A)DI(b, A) + TI(a' , A)Df(a', A)T2(b'. A)DIW. A)

- T1)(a', A)d\(a' , A) - T2(b,A)DI(b, A) ::: 0
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If we multiply the last equation by p,.(z) and sum over 'A, we get the CHSH
inequality:

-I S (O(a+, b+) - (O(a+, b'+) + (O(a'+. b+)

+ (O(a'+. b'+) - I [ (a') - 12(b ) S 0 (77)

We can repeat the argument by considering the transmission channel for the first
photon and the reflection channel for the second photon and taking instead

T[(a. 'A)Df(a , 'A) = x R2(b, 'A)~(b , 'A) = y

T[(a' , 'A)Df(a' , 'A) = x' R2(b' , 'A)~(b' , 'A) =y'

again with X = Y = I. We then obtain

-I S (O(a+, b-) - (O(a+, b'-) + (O(a'+. b-)

+ (0(0'+, b'-) - I((a') - r2(b) S 0 (78)

A further repetition of the argument, considering the reflection channel for the
first photon and the transmission channel for the second photon, leads to

-I S (O(a-. b+) - (O(a-. b'+) + (0(0'-, b+)

+ (0(0'-. b'-) - r [(a') - 12(b) S 0 (79)

A final repetition of the argument by considering the reflection channels for both
photons leads to

-I S (O(a- , b-) - (O(a- , b') + (O(a'- . b-)

+ (O(a'- , b' -) - r[(a') - r2(b) S 0 (80)

Inequalities (77}-(80) are all necessary consequences oflocal realism. From them
it is possible to deduce a Bell-type inequality for correlation functions: it is
enough to change the signs of (78) and (79) and add the resulting new inequalities
to (77) and (80) to obtain

-2 S P(ab) - P(ab') + P(a 'b) + P(a 'b ') S 2 (81)

where P(ab), etc., were defined in (75). For one-way polarizers only (77) is
meaningful and (78}-(81) do not correspond to actually measurable cases.

All these inequalities have been deduced from local realism only. They are
called "weak" in order to distinguish them from the "strong" ones, which are
dealt with in the following section.

3.4.2. Strong Inequalities for One-Way Polarizers

In experiments performed with one-way polarizers there is no photon
reflection but only a detectable transmission or an undetectable absorption . We
adapt our notation accordingly and drop the superscript T in the detection
probabilities .
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The quantum efficiencies, 11\ and 112' of the photomultipliers will be taken to
equal the A-averages of D 1 and D2:

(D\ (a, A)),. = L p,..(z)D1(a, A) = 11\
/..E/(Z)

(D2(b, A)),. = L p/..(z)D2(b, A)= 112
/..E/ (Z)

(82)

Similar relations , with the same 111 and 112' are assumed to hold for axes a' and b',
respectively.

The measurable joint detection probabilities are given by

roo == ro(oo, (0) = L p/..(z)D\(oo, A)D2(00, A)
/..E/ (Z)

ro(a+, (0) = L p/..(z)T\(a , A)D\(a, A)D2(00, A)
/..E/(Z)

ro(oo, b+) = L p/..(z)D\(oo, A)T2(b, A)D2(b, A)
/..E/ (Z)

ro(a+, b+) = L p/..(z)T1(a, A)D1(a, A)T2(b, A)D2(b, A)
/..E/(Z)

(83)

Similar definitions apply, in these last three cases, to the other pair ofaxes, (a, b'),
(d, b) and (a' , b').

I . The additional assumption made by Clauser, Horne, Shimony, and Holt
(CHSD). Given that a pair of photons emerges from two regions of space where
two polarizers can be located, the probability of their joint detection from two
photomultipliers DdA) is independent of the presence and orientation of the
polarizers.(13)

This additional assumption allows us to write

DI(oo, A)D2(00, A) = D\(a, A)D2(00, A) = D1(00, A)D2(b, A)

=D I(a, A)D2(b, A) =D\2(A) (84)

and so on for a' and/or b'.
Write the inequalities (72) by taking, in r, x =T\(a, A),x' =T\(a' , A),

y = T2(b, A),y' = T2(b', A), with X = Y = I:

-I s T.(a, A)T2(b, A) - TI(a, A)T2(b', A)

+ T.(a', A)T2(b, A)+ T\(a' , A)T2(b',A)- T\(a', A) - T2(b, A)

::: 0 (85)
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As a consequence of (84) one can multiply the whole expression by p,,(z)DdA.)
and sum over A. to get

-roo ~ ro(a+, b+) - ro(a'+, b+) + ro(a+, b'+)

+ ro(o'+,b'+) - ro(o', 00) - ro(oo, b+) ~ 0 (86)

which is the fundamental strong inequality for one-way polarizers.
The difference with respect to the weak inequality (77) is the presence of

-roo in the lhs. The nonparadoxical quantum prediction is roo = TlJ "12. In Table
3.2 one sees the values of 11) and 112 for published experiments. Notice that (77)
and (86) can respectively be written

-1 + f,(a') + f2(b) ~ F ~ f)(a')+f2(b) (87)

-roo + ro(o'+, 00) + ro(oo, b+) ~ I" ~ ro(a'+, 00) + e(oo, b+) (88)

The single-particle probabilities in (87) have nonparadoxical expressions in
quantum theory, as do the coincidence rates roo , ro(a'+, 00), and ro(oo, b+) in
(88). The quantity

r = ro(a+, b+) - ro(o'+ , b+) + ro(a+, b'+) + ro(a'+, b'+)

is the same in (87) and in (88). The interval to which I' must be restricted has
length 1 in (87) but only length roo = 11 I 112 ~ 0.04 in (88), as can be seen in
Table 3.2.

2. The additional assumption made by Clauser and Horne (CH). For every
photon in the state A. the probability of detection with a polarizer placed on its
trajectory is less than or equal to the detection probability with the polarizer
removed .(10)

Therefore for the first photon,

D1(a, A.) , D)(a', A.) s D)(00, A.)

Similarly for the second photon,

Dib, A.), D2(b', A.) s D2( 00, A.)

TABLE 3.2. QuantumDetector Efficiencies for DifferentEPR
Experiments

TI l Tl2 TlITl2

Perrieet 01.(39) 0.13 0.28 0.0364
Aspect et 01. (35) 0.08 0.27 0.0216
Clause(02 ) 0.26 0.07 0.0182
Holt and Pipkin(29) 0.06 0.25 0.0150
Freedman and Clauser'!" 0.20 0.20 0.0400

(89)

(90)
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To deduce the strong inequality, one can use the Clauser-Home lemma by taking

x = T1(a, 'A)D, (a, 'A) y = T2(b, 'A)D2(b, 'A)

x = T] (a' , 'A)D) (a', 'A) y' = T2(b', 'A)D2(b' , 'A)

X = D,(oo, 'A), Y = D2(00, 'A) (92)

Obviously (91) and (92) satisfy (70) and (71). Indeed if (89) and (90) hold as they
are, they will hold a fortiori if the Ihs is multiplied by a transition probability.
Therefore,

- D](oo, 'A)D2(00 , 'A)

:::: T,(a, 'A)DI (a, 'A)T2(b, 'A)D2(b, 'A)

- TI(a, 'A)D] (a, 'A)T2(b' , 'A)D2(b' , 'A) + T](a', 'A)D1(a', 'A)T2(b , 'A)D2(b , 'A)

+ TI(a', 'A)DI(a', 'A)T2(b' , 'A)D2(b' , 'A)

- T,(a', 'A)D] (a', 'A)D2(00, 'A) - D1(00, 'A)T2(b, 'A)D2(b, 'A)

::::0

Multiplying by p,,(z), summing over 'A, and remembering the defintions (83), we
again get the same inequality (86) obtained with the CHSH additional assump
tions.

3. Aspect's additional assumption. The set of detected pairs with a given
orientation of the polarizers is an undistorted representative sample of the set of
pairs emitted by the source.(14j

The assumption is not very carefully formulated, because the possibility of
absent polarizers should also have been considered. The main idea is, however,
very clear and can be expressed thus: Detectors introduce no distortions in the
sets of pairs transmitted through regions where polarizers can be present.
Technically this means that every double-detection and -transmission probability
is proportional to its corresponding double-transmission probability, and that the
proportionality constant is always the same. In order to apply this assumption let
us define the following double-transmission probabilities:

,(a+, b+) = L p,,(z)TI(a, 'A)T2(b, 'A)
" EI (z )

,(a+, 00) = L p,,(z)T,(a, 'A)
" EI (z )

,(00, b+) = L p,,(z)T2(b, 'A)
" EI(z )

'(00,00) = L p,,(z)= I
" EI (z )

Indeed it is natural to assume that
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TABLE 3.3. Numerical Comparison of Weakand Strong Inequalities for Different
EPR Experiments
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Inequality

Freedman and Clauser'17)

Holt and Pipkin(29)
Clausel32)

Aspect et al.(35)

Perrie et al.(3 9)

Weak

-0.794 ::s r s 0.206
-0.845 ::s r s 0.155
-0.838 ::s r s 0.162
-0.845 ::s r ::s 0.155
-0.812 ::s r ::s 0.188

Strong

0.000 s r ::s 0.037
- 0.002 ::s r ::s 0.019

0.000 ::s r ::s 0.018
0.000 ::s r ::s 0.015

-0.002 ::s r ::s 0.038

where the meaning of the symbols is as expected. One can start from (85),
multiply by PA(Z), and sum over A. The result is

-'0 :s .(a+, b+) - .(a+, b'+) + .(a'+, b+)

+ .(a'+ , b'+) -.(a'+, (0) -.(00, b+) :s 0 (93)

where '0 = .(00, (0). According to quantum mechanics the double-detection
probability when no polarizers are placed on the paths of the two photons is
roo = 11 1112 ' This allows us to identify 111112 as the universal constant, which,
according to Aspect's assumption, gives the ratio between a double-transmission
and -detection probability, and the corresponding double-transmission probabil
ity. We can write

ro(a+ , b+) = .(a+, b+ )11 I 112

ro(a+ , (0) = .(a+, (0 )111 112

ro(OO,b+) = .(00, b+)11 1112

roo = ' 0111112 = 11 1112

and so on for the other similar probabilities.
Therefore by multiplying (93) by 11111 2> one again obtains the inequalities

(86). The striking difference between strong and weak inequalities for published
experiments is shown in Table 3.3 and Fig. 3.6. Again, r is the quantity
appearing in (87) and (88).

W.I.

j r: j
r. ... , . . . •-0.845 \, 0 0.015 0.155

FIGURE 3.6. The measurable quantity r is predicted to fallwithin the intervals ( - 0.845, 0,155) and
(0, 0.015) by the weak (w. I.) and strong inequality (S. I.), respectively.The given figures are exact for
the experiment by Aspect et al.(28)
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3.4.3. Strong Inequalities for Two-Way Polarizers

The theory of EPR experiments with two-way polarizers was developed by
Garuccio and Rapisarda'P' (GR) and adopted by Aspect et al. in their second
experiment.'I'" To obtain a strong inequality, GR made the following assumption:

GR Assumption. The sum of the probability of transmission and detection, and
of the probability of reflection and detection in a two-way polarizer does not
depend on the orientation of the polarizer.

More formally,

T1(a, A,)Di(a, I.) +R1(a, A,)Tf(a,I.) = F(A,)

T2(b, A,)Df(b, I.) +R2(b, A,)Tf(b, I.) = G(A,)
(94)

Garuccio and Rapisarda introduced the following definition of a normalized
correlation function:

where

E( b) = N(a, b)
a, Z(a, b)

N(a, b) = ro(a+, b+) - ro(a+, b-) - ro(a-, b+) + ro(a-, b-)

Z(a, b) = ro(a+, b+) + ro(a+, b-) + ro(a- , b+) + ro(a-, b-)

(95)

(96)

(97)

and the joint probabilities ro(a±,b±) were defined in (74). It is a simple matter to
see that (74) and (96) imply

N(a, b) = L p,,(z)[TI (a, A,)Di(a, I.) - R1(a, A,)Df(a, I.)]
" E/ (Z)

x [T2(b, A,)Df(b, I.) - R2(b, A,)lJf(b, I.)]

Z(a, b) = L p,,(z)[TI (a, A,)Di(a, I.) +R1(a, A,)Df(a, I.)]
" E/ (Z)

As a consequence of (94) one can write Z without reference to a and b:

Z = L p,,(z)F(A,)G(A,)
"E/(Z)

Writing

T1(a, A,)Di(a, I.) - R1(a, A,)Df(a, I.) == p(a, I.)

T2(b, A,)Df(b, I.) - R2(b, A,)~(b, I.) == q(b, I.)

(98)

(99)
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it becomes apparent that (94) allows one to write
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But (95)-(97) give

lP(a, A)I s F(A); Iq(b, A)I ::: G(A) (100)

so that

1
£(a, b) =Z L PA(z)p(a, A)q(b, A)

AE/(Z)
(101)

I£(a, b) - £(a, b') +£(0', b) +£(0', b')1

s ~ L PA(z){lP(a, A)llq(b, A) - q(b', A)I + lP(a', A)llq(b, A) + q(b', A)I}
AE/(Z)

(102)

Using the directions a, a', b, b' in (100), (102) becomes

I£(a, b) - £(a, b') +£(0', b) +£(a', b')1 ::: 2 (103)

(104)

(105)

Written in terms of correlations functions Pia,b) as defined in (75), this new
strong inequality becomes

IP(a, b) - Pia, b') +P(a', b) +P(a', b')1 ::: 2Z

This inequality is of direct physical interest because its rhs can be identified with
2111112' twice the product of the quantum efficiencies of the detectors placed on
the two channels.

3.4.4. Weak and Strong Freedman Inequalities

The weak and strong inequalities obtained for one-way polarizers, are,
respectively, (77) and (86). From them it is possible to deduce Freedman's
form(17) of these inequalities. To do so, make the assumption, easy to check
experimentally and predicted by quantum mechanics, that the experimental
settings a and b enter the double-detection probability only through the angle
between the polarizer axes:

oo(a+, b+) = oo(a - b)

Now by using (86) and (104), one obtains

-000 + oo(a', (0) + 00(00, b) ::: oo(a - b) - oo(a - b')

+oo(a' - b) + oo(a' - b') ::: oo(a', (0) + 00(00, b)

where the + symbols have been dropped. Choosing for the experimental
parameters values satisfying

(a - b) = (a' - b) = (a' - b') = q> and (a - b') = 3cp (106)
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it follows that

-roo + ro(a', (0) + ro(oo, b) :::: 3ro(cp) - ro(3cp) :::: ro(a' , (0) + ro(oo, b) (107)

Maximum violations of quantum mechanics take place for cp = 22.5° and
cp = 67.so. The inequalities (106) for these two values of cp can be combined as

Iro(22S) - ro(67S)1 :::: roo/4 (108)

Repeating the same steps for inequality (77), one obtains the weak form of
Freedman's inequality :

Iro(22S) - ro(67S)1 :::: 1/4 (109)

We shall now compare Freedman's inequalities with the quantum-mechan
ical predictions. On setting

0= Iro(22S)/roo - ro(67S)/rool

the strong form of Freedman's inequality becomes

0<1-4

and the weak form becomes

o:::: 1/4roo

(110)

(111 )

(112)

Most of the experiments have made use of atomic-cascade photon pairs in a
singlet state. The quantum-mechanical double-detection probability for this kind
of source is

roQM(a - b) = ~[€~€~ + €~€~F(e)cos2(a - b)]111112 (113)

where €~ and €i are parameters related to the transmittance of the polarizers,
F(e) is a function of the half-angle e of the cones subtended by each detector
aperture, and 111 and 112 are the quantum efficiencies of the photomultipliers. If
the polarizers have been removed

roo = 111112

The quantum-mechanical value of 0, therefore, is

,J2 1 2
OQM =4ccF(e)

(114)

(lIS)

In Table 3.3 the weak and strong limits of Bell's inequalities are compared
with the quantum-mechanical values. It can be seen that those predictions always
exceed the strong limit but are largely below the weak one; therefore, none of the
experiments reported in Table 3.3, in principle, can disprove Freedman's weak
inequality. Moreover, local realistic models in which the additional assumptions
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are explicitly violated have been shown to reproduce the experimental predictions
of quantum mechanics when low-efficiency detectors are employed.V'"

The additional assumptions have played a fundamental role in shifting the
debate on local realism from the theoretical positions to the experimental ground;
they have been a tool to obtain stronger limits when low-efficiency photomul
tipliers have been employed. The confidence placed in these assumptions is far
weaker than that in local realism, so it seems more reasonable to discard them
rather than consider the performed experiments as a conclusive proof of the
violation of local realism.

3.4.5. Generalized Bell-Type Inequalities

In the late seventies it became clear that other weak inequalities like Bell's
could be deduced from local realism. In practice, an inequality of Bell type could
be deduced for every linear combination of correlation functions. Sometimes
these provide further physical restrictions.o 9

-
21) For example, Roy and Singh(20)

deduced three interesting inequalities. Their results will be mentioned, but their
proof will not be discussed because later in this section a very general method of
proof of inequalities for all possible linear combinations of correlation functions
will be presented, those of Roy and Singh included. Before considering them let
us note that given a linear combination of correlation functions

m n

L L c.n»; b)
;= lj=1

the real coefficients Cij define an m x n matrix that can be taken to represent
completely the original linear combination.

The first inequality is

4 5
L L CbP(a;,b) s 6
;= lj= l

where

Cb= (:
1 1 0

-t)1 -1 1
I 0 -I

I - I 0 0

The second one is

4 7
L L CijP(a;, b) ::; 8
;=l j = 1

(116)

(I 17)
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where

Cl= (:
1 1 1 0 0

J)-1 0 0 1 1
0 -1 0 -1 0

1 0 0 -1 0 -1

and the third one is

6 8

L L ctP(a;, b) s 16 (118)
;= l j = 1

where

1 -1 -1 1 1 1 1
1 1 1 -1 -1 1 1

ct=
1 1 1 1 1 -1 -1

-1 -1 1 1 -1 1 -1
-1 1 -1 -1 1 1 -1
-1 1 -1 1 -1 -1 1

It is easy to show that inequalities (116Hl18) provide restrictions on P(a;, b)
not implied by Bell's inequality. Suppose, for example, that the correlation
functions multiplied by negative coefficients in (116) vanish-

P(a4 ' b2) =P(a2' b3) = P(a3'b4) = P(a3 ' bs) = 0

and the remaining P(a;, bj ) occurring in equality (116) are all equal to 2/3; then
all the Bell inequalities involving these P(a;, bj ) are obviously satisfied, but
inequality (116) is violated because its lhs is 10· ~ > 6.

Next a general proof will be given of a large set of inequalities using the
formulation of probabilistic local realism of Section 3.3. If p".<z) ~ 0 is the
statistical weight of the Ath homogeneous subset E", the correlation function is
given by (68):

P(a, b) = L p,,(z)p(a,A)q(b,A)
" E/ (Z)

where, using the notation of (69),

(119)

(120)
p(a, A) = fA(a+, Aa ) - fA(a- , Aa )

q(b, A) = g,,(b+, Ab) - g,,(b-, Ab)

Since fA(a+, Aa) + fA(a-, Aa) = 1 and g,,(b+, Ab) + g,,(b-, Ab) = 1, it follows
that

lP(a , A)I s I , Iq(b, A)/ ~ 1 (121)
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The only interesting inequalities deduced from local realism are those that
hold for all conceivable local realistic theories of the type given by Eqs. (119) and
(120). Obviously, it is not possible today to say which (if any) of the infinitely
many theories based on local realism is the right one. Therefore, inequalities
deduced from a particular theory (or from a particular set of theories) are not
interesting.

The following lemma allows one to deduce inequalities that are true for all
conceivable local realistic theories.

Lemma. Given a real number M, the inequality

I: CijP(a;, b) :5 M
ij

(122)

holds for all conceivable local realistic theories if and only if the inequality

I: CijP(a; , "A)q(bj , "A) :5 M (123)
ij

holds for arbitrary values of "A and for arbitrary dependen ce ofp and q on their
arguments.

Proof Inequality (123) is a consequence of inequality (122) since, among all
conceivable local realistic theories, there are those in which the statistical weight
p).(z) in (119) is a Kronecker delta o),J.o and therefore

I: CijI: p).(z)p(a;, "A)q(bj , "A) :5 M
ij ).

implies that

I: CijP(a;, "Ao)q(bj • Ao) :5 M
ij

(124)

where Ao, being arbitrary, can assume any value. Conversely, if inequality (123)
holds for arbitrary "A and arbitrary dependence of p(a;. "A) and q(a;, "A) on their
arguments, it is sufficient to multiply it by p).(z) and sum in order to obtain
inequality (122) as true for an arbitrary local realistic theory. The proof is thus
completed.

This lemma does not specify the value ofM. One calls an inequality of type
(122) "trivial" if

In fact, the Ihs of inequality (122) cannot be larger than the rhs of the previous
inequality since every correlation function Pia., b) has, by definition, a modulus
not exceeding 1.

The objective here is therefore the determ ination of nontrivial inequalities
satisfie d by all conceivable local hidden-variable theories. Obviously, the most
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stringent inequality is found when M is taken equal to the maximum value of the
lhs of inequality (123) (for given Cij):

M = max1~ CyP(a" l.)q(bj , l.) I (125)

The quantity in braces in (125) is linear in p(ai' A) and q(bj , A); therefore its
maximum M is found on the boundary, namely, at one of the vertices of the
hypercube C in the multidimensional space having p(ai ) and q(bj ) as Cartesian
coordinates; i.e.,

(126)

(127)

where ~i = ±1, llj = ±1, and the maximum is taken over all possible choices of
~i and llj ' Thus the most general consequence of local realism for linear
combinations of correlation function reads

m n 1m n I~ L CijP(ai, b):s max L ~ Cij~illj
1=1;=1 ~iT\j 1= 1; = 1

Three theorems allow us to narrow the set of inequalities of the type (127)
which can be considered to be of physical interest.

Theorem 1. Every inequality whose coefficients Cij have Jactorizable signs is
trivial.

In fact if

Cij = ICijlliiVj ' Iii' Vj = ±1
one has from Eq. (126) that

M = TaxlI.: 'Cij'liiVj~illjl = I.: ICijl
..,i'lj lj lj

since it is possible to choose ~i = Iii and 11.; = Vj for all i and j.

Theorem 2. If an argument ai or an argument bj appears only once, the
inequality can be reduced to a more elementary one.

Indeed, there is a one-to-one correspondence between the experimental
parameters ai and sign factors ~i' and between bj and 11.;. As a consequence, if we
suppose that al figures only once, then the sign factor ~l figures only once, and

M = maXlCI/~llll + t i: Cij~i11.;1
~i. T\j 1=2 ;=1

= ICIII +~~xl~j~ Cij~illjI
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since one can always choose ~l in such a way that CI/~l TIl = ICI/I. In this case
the inequality

m n

L L CijP(ai' b) S M
i=lj=l

can be reduced to the more elementary one

m n

L L CijP(ai' b) S M - ICI/I
i=2j=1

Theorem 3. If the lhs ofinequality (122) can be split into two parts such that no
argument a, or bj is common to two correlation functions belonging to each of
these two parts, then the inequality deducible from local realism can be reduced
to two more elementary inequalities.

Proof The correspondence between parameters ai and bj , and sign factors ~i and
T\.i, ensures that if the lhs can be split into two parts, with no argumentai or bj in
common, then the rhs can also be split into two parts having no sign factor ~i or
Tlj in common. Hence, the original inequalitycan be writtenas the sum of the two
simpler ones.

It is easy to prove, using Theorem 2, that linear combinations of three
correlation functions give only reducible inequalities. More generally, odd
numbers of correlation functions give only reducible inequalities.

Consider, then, the case of four correlation functions. By Eq. (126) the
maximum for Einstein locality is obtained for

itl CijP(ai' b) ::: M = maxi Ejt Cij~illjI
= maxi~ I;ij~ ICijlcrijTljI
= maxltl i: ,Cij,crijTljll

.=1 J=I

= max{llCl11 + IC12I~1 + IIC221 + IC21lcrW (128)

where crij is the sign of Cij, ~ =crll . cr12' TI i: Tl2, and o =crll . cr12' cr21 . cr22 '
If o =+I (or if, equivalently, the signs are factorizable) the result is trivial:

M = LICijl
ij

If, instead, o = -I, then

M = L ICijl - 2 min IClml
ij 1m

(129)
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From (129) it is possible to deduce that, in the case of four correlation functions,

I
M > -" IC·I-24:- IJ

IJ

where equality holds only when Cij is constant for all i and j, or, equivalently, for
Bell's inequality; so in the case of four correlation functions no inequality
stronger than Bell's inequality (for which equality obviously holds) exists.

The case n = 6 is more complicated and only the result will be presented
here. One obtains

where

2 3
L: L: CijP(a;,b) s M
;=lj=1

(130)

where PI and P2 are sign factors chosen in such a way as to maximize M and

A particular application of inequality (130)

P(al' bl) + P(al ' b2) - P(al' b3) + P(a2' b l ) + P(az, bz) - P(az , b3) ::::: 2

(132)

as can easily be checked. This inequality can be more restrictive than any Bell
inequality because if the correlation functions appearing with the + (- ) sign in
(132) assume the value +! (-!), the latter inequality is violated while Bell's is
satisfied.

Given any general inequality, an "associated Bell inequality" is a Bell
inequality that contains correlation functions that also appear in the original
inequality.

The following theorem gives a powerful method for singling out the
inequalities that provide restrictions on correlation functions not implied by
Bell's inequality.

Theorem 4. Given a linear combination

L = L: CijP(a;, b)
ij

if

M=L:ICijl
ij
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and if

117

is the maximum value ofL allowed by local realism, then the inequality L ~ M
implies the existence ofphysical restrictions not contained in any Bell inequality
provided that

M<!M
2 (133)

Proof Consider_the n_ x m space in which the P(a;, bj ) are located on the axes
and the vector P = {P(a;, b)}, which maximizes the linear combination L for
given Cij ' The components of this vector all have modulus I and their signs are
the same as those of the corresponding Cij' The components of the new vector

{P'(a;, b)} = {O.SP(a;, b)}

all satisfy the associated Bell inequalities [because each IP/(a;, b)1 = O.S], but it
results in

The inequalities of local realism that satisfy condition (133) are called "super
inequalities." The Roy-Singh inequalities (116) and (118) are historically the first
examples of superinequalities; inequality (132) is another.

Theorem 4 only expresses a sufficient condition for the existence of an
inequality stronger than Bell's inequality. For example, inequality (117) has its rhs
equal to one half of the possible maximum, but provides restrictions on P(a;, b)
not implied by Bell's inequality.

The case of three values for a and three (or more) for b was analyzed by
Garg.(22) An interesting result is obtained in the case offour different values each
for a; and bj . In this case the number of correlation functions is 16 and the
number of different 4 x 4 matrices with integer coefficients Cij in the range
{-2, 2} is S16 . Using the previous method and a computer, Garuccio(23) analyzed
13,SOO,OOO matrices (0.009% of the total) and found IOS0 superinequalities.
Since the region analyzed has no special features, it is probably possible to
generalize the result and conclude that an analysis of the complete set of 4 x 4
inequalities of the stated kind would give nearly 107 superinequalities.

The following are some examples of these inequalities:

1.
4

L CbP(a;, bj ) ~ II
;j=l

(134)
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where

ci=(j 2 2

-~ )2 1
2 0

1 1 - 2

4

2. L CtP(ai , b) ~ 10
iJ=l

where

CJ ~ (j 2 2

-~)1 - 1
1 -1

2 - 2 0

4
3. L C&P(ai , b) ~ 6

iJ= l

where

C; ~ (-1
1 1 -1)1 1 - 1
2 -1 1

0 0 1 1

(135)

(136)

To clarify the content of Theorem 4, consider inequality (134) . The maximum
poss ible value of the lhs is obviously

_ 4 I

M= LICijl = 23
iJ

and is obtained for a suitable choice of Pta., b):

(

I 1 I
- 1 1 1

{P(ai' b)} = - 1 1 0

1 1 -1

(137)

[A matrix representation is used for the vector (P(ai' b)} in the 4 x 4 space.]
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Starting from set (137) it is possible to define the new set of correlation
functions:

(

0.5 0.5

{Pea; , b)} = _~:~ ~:~
0.5 0.5

0.5
0.5
o

- 0.5

0.5)-0.5
o
o

(138)

Since all nonvanishing functions P'(a;, b) are equal to ±0.5 , all Bell inequalities
containing the P'(a ., b) are satisfied. Therefore, using only the Bell inequality,
one could tentatively conclude that the set (138) describes a physical system
compatible with local realism. This is, however, not true since the set (138)
introduced in inequality (134) gives 11.5 < II ; and therefore the inequality is
violated and the set of correlation functions (138) cannot be obtained from a local
theory. Moreover, a hypersphere with center {P'(a;. b)} and radius R = !(0.5)
exists such that all the sets of correlation functions inside this circle that satisfy
Bell's inequality violate inequality (134).

It was stated that, in the case of 4 x 4 correlation functions, a large number
of superinequalities exists. It is possible that only a finite number of these
inequalities are independent and form a set that completely expresses local
realism. Further studies would answer this question .

New and more stringent inequalities were deduced in 1987 by Lepore(24) for
linear combinations ofjoint probabilities. The physical content of these inequal
ities is not entirely deducible from the inequalities discussed above.

Consider m instrumental parameters at , a2' .. .• am for the first measuring
apparatus and n instrumental parameters bi , b2 • • • • • b; for the second measuring
apparatus . Let

(i)hk(a;, b) = L P1.(z)Ph(a; , "A)qk(bj , "A)
l.E/(Z)

(139)

by the joint probability of measuring A(a;) and obtaining h and measuring R(b)
and obtaining k(h , k = ±1). Now consider the linear combination of joint
probabilities

(140)

where ctk are 4mn arbitrary coefficients.
In order to deduce the inequalities

(141)
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true for all conceivable local realistic theories, it is sufficient, using the lemma, to
prove that the inequality

mo s L Ctkph(ai, A.)qk(bj , A.) ~ Mo (142)
hkij

is true for arbitrary value of A. and for arbitrary dependence ofPh and qk on their
arguments.

Using the relations

p+(ai' A.) + p_(ai' A.) = 1

q+(bj , A.) +q_(bj , A.) = I

one can write

where F is a linear function of each of the indicated arguments. The most
stringent inequality is found when Mo is taken equal to the maximum value (and
mo equal to the minimum value) of F. Sinxe F is defined in the hypercube in the
multidimensional space having p+(ai' A.) and q+(bj , A.) as Cartesian coordinates,
the maximum and minimum are found on the boundary, namely at one of the
vertices of hypercube.

Therefore, setting

(144)

(145)

(146)

one obtains the set of inequalities

mo ~ L Ctkoohk(ai' b) ~ Mo
hkij

For every choice of coefficients ctk relation (146) provides the most stringent
inequalities that can be deduced from local realism if mo and Mo are given by
(144) and (145), respectively.

To prove that the set of inequalities (146) is not equivalent to the set of
inequalities of correlation functions (127) and implies more stringent restriction
for local realism, the following model studied by Garg and Mermin(25) in 1982
will be used. In this model the joint probabilities are

OOhk(ai, b) =! [I - c(h+ k) +Aijhk] (147)
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(i,j = 1, 2, 3) with

and

121

(148)

(149)
AlI =A22 = 1

Aij = - t for i =j = 3 and i ::f:. j

From Eq. (147) one has for the correlation functions

P(o;, b) =Aij

and it is easy to prove that this model satisfies all inequalities deduced from local
realism for correlation functions .

Consider now the case of three directions ai ' a2' a3 for the first apparatus
and three directions b., b2 , b3 for the second. One can write the linear combina
tion

00(03+' b3+) - 00(02-' b2-) + oo(al- ' bl+) + 00(a2+' b2-)

+ 00(a3-' be) - 00(a3-' bl+) + 200(al+' b2+)

+ 00(02-' b3- ) - oo(al+' b3- )

By calculating the minimum value of the associated function F, one gets min
F = 0; therefore the following inequality holds :

00(a3+' b3+) - 00(a2-' b2-) + oo(al-' bl+) + 00(a2+' b2-) + 00(a3-' b2-)

- 00(a3-' bt+)+ 200(al+' b2+) + 00(a2-' b3-) - oo(al+' b3-)
::: 0 (150)

IfEqs. (147) and (149) are substituted into inequality (150), one obtains -c ::: 0,
which contradicts Eq. (148) . So the Garg-Mermin model satisfies all inequalities
for correlation functions but violates at least this inequality for joint probabilities:
then the model cannot be reproduced by a local probabilistic theory.

It can therefore be concluded that the set of inequalities (142) is the widest
set of inequalities deduced from local realism for linear combinations of joint
probabilities with real coefficients.

3.4.6. The GHZ Formulation of the EPR Paradox

In 1989, Greenberger, Home, and Zeilinger(26) (GHZ) formulated an
interesting new theorem that has attracted wide attention. They considered a
system consisting of three mutually well separated and correlated spin-! particles,
in the context of which an incompatibility is demonstrated between quantum
mechanics and local realism. Their demonstration, unlike Bell's theorem,
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concerns only perfect correlations rather than statistical correlations and requires
no inequalities.

The state of the three particles is described by the vector

I'P) E 1[2 e 1[2 ® 1[2

which assumes the form

1
I'P) = J2{ll, 1, 1) -I-I, -I, -I)}

with respect to the three a-axial bases. Furthermore

(151)

for all three values of i, with the self-adjoint operators

°
1 2 3

1 = o; ® O"y ® O"y

°
I 2 3

2 = O"y e o"x ® O"y

°
I 2 3

3 = O"y ® O"y ® o"x

The result of measuring the x component S, of the spin of any particle can be
predicted with certainty by distant measurements of the y components of the other
two, and similarly for the result of measuring the y component Sy of anyone of
them. According to the EPR reality criterion S;}3(Sx' S; components ofparticles
1,2,3) must be elements of reality having preassigned values ±l. From the
locality condition it follows that these values are independent of the measure
ments made. So one can write the relations

S;S;S; = +1, S~S;S; = +1, S~S;S; = +1 (152)

bearing (151) in mind. Remembering that S;,'; ,3 = ±1, one obtains

S;S;S; = +1 (153)

from (152) . It follows, however, from the definitions of°1,°2,°3 that

0 10203 = -0"; ® 0"; ® 0";
so that from 0102031'P} = I'P) it follows that

0"; ® 0"; ® O"; I'P) = -I'P)

which contradicts (153). Therefore the predictions derived from I'P) are incom
patible with local realism.

Mermin(27) considered this "an altogether more powerful refutation of the
existence of elements of reality than the one provided by Bell's theorem . . . ." The
physical plausibility of state I'P) can, however, be questioned; nobody has yet
managed to produce it. Furthermore, the argument is strictly restricted to the
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deterministic form of local realist theories, whereas Bell's theorem holds for
probabilistic local realist theories as well.

3.5. EXPERIMENTS WITH ATOMIC PHOTON PAIRS

Several experiments to test the validity of the strong inequalities have been
carried out with photons. The quantum-mechanical treatment of photon polariza
tion is similar to that of spin-4 in the important respect that both observables are
dichotomic. In the case of photon polarization this property is actually due to the
absence of a photon mass, a fact that has the practical effect of eliminating from
the theoretical scheme the photons with longitudinal polarization. Only photons
whose linear polarization is perpendicular to the direction of propagation are left,
a situation similar to that of classical electromagnetic waves whose transverse
nature is well known. In the study of the EPR paradox for atomic photon pairs it
is interesting to consider linear and circular polarization.

3.5.1. Correlated Atomic Photon Pairs

In quantum theory one usually defines

IR)= state vector for right-handed circular polarization
IL) =state vector for left-handed circular polarization
[x) =state vector for linear polarization along the x-axis
Iy) = state vector for linear polarization along the y -axi s

These two sets of vectors are not unrelated. Elementary textbooks on quantum
mechanics show that

1
IR) = .Ji {Ix) + ilY)}

I
IL) = -Ii{Ix) - ily)}

(154)

The existence of dichotomic observables for photons means that Bell-type
inequalities can also be formulated for real photons. Correspondingly, there are
also situations where quantum theory gives a description of the polarization of
two correlated photons in terms of nonfactorizable state vectors, analogous to the
singlet state of two spin-4 objects, which imply violations of local realism.

In the case of photons the parity quantum number plays an important role
and it is necessary to distinguish, for instance, the states JP = 0+ and JP = 0-,
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represented respectively by the state vectors

(155)

These states can also be expressed in terms of linear polarization states by using
relations (154) for photons IX and ~. Taking into account the opposite directions
of motion of the photons, one obtains

1
10+) = y'2{lxa)lxp) + lYa)lyp)}

-i
10-) = y'2{lxa)lYp) -lYa)lxp)}

(156)

The basis states with respect to which linear polarization is expressed are
arbitrary. Using the rotated x and y' axes, one obtains results identical to (156)
for both states, with x', y' instead ofx, y. This property expresses the invariance of
zero-angular-momentum states for rotations about the z-axis.

The argument leading to the EPR paradox could easily be repeated for the
foregoing two photon states, starting, for instance, from the observation that
elements of reality corresponding to polarization measurements along the x- and
x'-axes can be assigned to the photon ~ from measurements performed (or
thought to be performed) on photon IX. All the inequalities (of weak and strong
types) found in previous sections clearly apply also to correlated photon pairs,
since they were deduced merely from the assumed dichotomic nature of the
measured quantities.

Several experiments performed from 1972 to 1982 checked the validity of
these inequalities. They are collected in Table 3.4, where the atom used, the type
of cascade, and the wavelengths of the emitted photons are also shown.

TABLE 3.4. Experiments to Test the Strong Inequalities

Reference Atom Cascade 1.1 1.2

Freedmanand Clauser'!" 40Ca 4p2 I So -> 4p4s IPI -> 4s2 ISo 5513 4227
Clauserl32) 202Hg 9 1PI -> 7 3S

1-> 6 3P
O 5676 4046

Clauserl33) 202Hg 9 1PI -> 7 3S
1 -> 6 3P

O 5676 4046
Fry and Thompson'<" 20<1ig 7 3S

1 -> 6 3P
I -> 6 'So 4358 2537

Aspect et a/.(35) 40Ca 4p2 ISO -> 4p4s IPI -> 4s2 ISO 5513 4227
Aspect et a/.o6

) 40Ca 4p2 ISO -> 4p4s IPI -> 4s2 ISO 5513 4227
Aspect et a/.(28) 40Ca 4p2 ISo -> 4p4s IPI -> 4s2 I So 5513 4227
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The (J = 0) ---+ (J = 1) ---+ (J = 0) cascade of calcium is the most widely
used. In this case one can use the strong inequality

(157)

which is an immediate consequence of (107), given that all rates R are
proportional to the corresponding probabilities co. In this case the quantum
mechanical predictions based on the state vector IO+} are, for the quantities in
(157),

(158)

(159)

where F1(8) is a function of the half-angle 8 subtended by the primary lenses
representing a depolarization due to noncollinearity of the two photons and where

(160)

Here €1 (€~) is the transmittance of the first polarizer for light polarized parallel
(perpendicular) to the polarizer axis; a similar notation has been used for the
second polarizer. All these transmittances are usually very near the ideal case,
with €:w close to I and €~ close to 0 (i = 1,2). The values of these parameters are
collected in Table 3.5 for the indicated experiments. The notation used in Table
3.5 is the usual one, in the sense that index I (2) on an optical parameter refers to
the first (second) photon of the cascade , with wavelength Al (A2) in Table 3.4.
One should add two important observations. First, the experiment by Aspect et
al.(16) used as polarizers two-way polarizing cubes made of two prisms with
suitable dielectric thin films on the sides that are stuck together. For such

TABLE 3.5 . Optical Transmittances of the Two Polarizers

Reference (1, (I (2 (2
m M m

Freedman-Clauser 1972(17) 0.97±0.01 0.038 ± 0.004 0.96±0.01 0.037 ± 0.004
Holt-Pipkin 1973(29) 0.91O±0.001 <1 0- 4 0.880 ± 0.00 I < 10- 4

Clauser 1976(32) ""0.965 ""0.011 ""0.972 ""0.008
Fry-Thompson 1976(34) 0.98±0.01 0.02±0.005 0.97±0.01 0.02±0.005
Aspect et al. 1981(35) 0.972 ± 0.005 0.029 ± 0.005 0.968 ± 0.005 0.028 ± 0.005
Aspect et at. 1982(16) 0.950 ± 0.005 0.007 ± 0.005 0.930 ± 0.005 0.007 ± 0.005
Aspect et al. 198i28

) 0.96±0.01 0.005 ± 0.005 0.92±0.01 0.007 ± 0.005
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polarizers the notation of Table 3.5 is not the usual one, and one should therefore
make the identifications

Til - I Tl- I Til _ 2 Tl- 2
I - EM' I = Em' 2 - EM' 2 = Em

The second observation is that the experiment by Aspect et al.(28) used time
varying analyzers and that each of these switching devices was followed by two
polarizers in two different orientations. Therefore , the optical parameters for this
experiment should actually be doubled for each photon. In practice, however, it
happens that the two "large" transmittances are identical for each photon and that
the two "small" ones are different by insignificant amounts within the quoted
errors . It follows that the parameters in Table 3.5 are good for the two polarizers
following every switching device.

As one can see from Table 3.4, some experiments used mercury isotopes and
cascades of the type (J = I) ~ (J = 1)~ (J = 0). Since in the initial atomic
scale there are three levels with different J3 values, the state of the emitted photon
pair is not unique and the calculation is slightly more complicated than in the case
of the calcium cascade. The result is simple, however, if it is assumed that the
three different initial atomic levels are equally populated and incoherent. One of
them obtains for the mercury (J = I) ~ (J = I) ~ (J = 0) cascade that

R(<p) I I 2 I I 2
~ = 4"E+E+ - 4"ccF2(e) cos2<p (161)

(162)

In (161), F2(e) is a new function of the half-angle e subtended by the primary
lenses and again represents the depolarization due to noncollinearity of the two
photons.

3.5.2. Review of Published Experiments

The published experiments on the EPR paradox performed using atomic
photon pairs will now be reviewed. It should be borne in mind that no experiment
has ever violated a weak inequality.

1. Freedman and Clauser. In this experiment the 3d4p I PI state of calcium in a
beam was excited by radiation from a deuterium arc lamp. About 10% of the
atoms went to the 4p2 ISo state, which is the initial state of the (0, 1,0) cascade
emitting photons of wavelengths 551.3 nm and 422.7 nm. See Fig. 3.7. Since the
natural calcium used in this experiment was an almost pure sample of the isotope
with zero nuclear spin, there was no significant reduction expected in the
polarization correlation due to hyperfine structure. On each side of the source
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-..:;.-- 4p4sl> t

FIGURE 3.7. Level scheme for calcium. The upward-pointing line shows the atomic excitation used
for producing the initial level 4p2 I So, starting point of the atomic cascade in the experiment of
Freedman and Clauser.(I7)

the photons were collected and collimated by a lens, then passed through a filter
and a linear polarizer to a photomultiplier. Freedman and Clauser(17) used pile-of
plates polarizers each of which was about I m long and consisted of 10 glass
sheets inclined nearly at the Brewster angle.

The photomultiplier pulses were fed to a coincidence circuit, and coin
cidence measurements were made for lOO-s time intervals, the intervals during
which all the plates were removed alternating with intervals in which the plates
were inserted. The results obtained, as the relative orientation of the transmission
axes of the polarizers was varied, were found to be in good agreement with the
quantum-mechanical predictions.

C.·OVEN

T.A.C.P.H.A.

LENS LENS

~
FILTER 2 {IL'T'.~ER~1_----'~

P.M.2 POLARIZER 2 ® ,...o~ POLARIZER 1 P.M.1
~ LENS

I----~L:-:E:::NS FILTE:R:--------l

LENS
• 02 ARC

FIGURE 3.8. Schematic of the apparatus of Freedman and Clauser.(17)
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if

The strong inequality (III) can be written

0:::: 0.250

0= IR(22f) _ R(67f)1
Ro Ro

(163)

(164)

because the ratio of the coincidence rates equals the ratio of the corresponding
probabilities. The results for R(22!0) and for R(67f), combined with those with
both polarizers removed for Ro, gave 0 = 0.300 ± 0.008, in clear violation of
Freedman 's strong inequality and in agreement with the quanum-mechanical
prediction OQM = 0.301 ± 0.007.

2. Holt-Pipkin.(29) In the second experiment the 567-nm and 404.7-nm photons
emitted in the (I, I, 0) cascade of the zero-nuclear-spin isotope 198Hg of mercury
were observed. Since the final cascade level is not the ground state of the atom,
no precautions had to be taken to avoid the effects ofresonance trapping observed
in the Freedman-Clauser experiment.P'" To produce the required radiation,
mercury vapor was excited to the 9 1P1 state by a IOO-eV electron beam, both
the beam and the vapor contained in the encapsulated source Pyrex glass. Calcite
polarizers were used. These polarizers have a much better extinction ratio than
pile-of-plates polarizers, but the values of EM are somewhat low (Table 3.5).

Experimentally it was found that T\ = 0.216 ± 0.013, a result that disagrees
with the quantum-mechanical prediction llQM = 0.266 and clearly does not
violate the strong inequality. This discrepancy has never been completely
explained. Proponents of local realistic theories have suggestedv'? that the use
of calcite polarizers may be significant.

fjP
1

_ ..........._61S

°FIGURE 3.9. Level scheme for mercury. The upward-pointing line shows the electron excitation of
the initial level 9 IPI used in the experiment of Holt and Pipkin(29) as starting point of the atomic
cascade.
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3. Clauser. Clausel32) repeated the Holt-Pipkin experiment, using the same
cascade but in the 202Hg isotope ofmercury. Also, instead ofcalcite polarizers, he
used pile-of-plates polarizers. This experiment gave 0 = 0.2885 ± 0.0093, violat
ing Freedman's strong inequality and in close agreement with the quantum
mechanical prediction OQM = 0.2841.

In an extension of the previous experiment, Clauser(33) measured the
circular polarization correlation by inserting quarter-wave plates between each
linear polarizer and the source. The quarter-wave plates were obtained by
applying pressure to bars of commercial-grade quartz. Assuming ideal quarter
wave plates, quantum mechanics predicts that the zero-angular-momentum state
vectors (156) should remain unmodified after the two photons have crossed the
plates. Therefore, (163) also remains a valid form of Freedman's strong inequal
ity. From the experimental results Clauser found 0 = 0.235 ± 0.025, while,
taking into account the transmission efficiencies of the polarizers and the
assumed lack of stability of the quarter-wave plates, he obtained from the
theory OQM = 0.252 [which almost does not violate (163)]. Within the limit of
experimental errors, these circular-polarization results were in agreement with
quantum mechanics, but the whole argument was not very satisfactory.

4. Fry and Thompson. These authors(34) used the 435.8-nm and 253.7-nm
photons emitted in the (I , 1,0) cascade in the zero-nuclear-spin isotope 200Hg of
mercury (Table 3.4). The 7 3S

1 state of a mercury beam was populated in a two
step process with electron bombardment excitation of the 6 3P2 metastable state
followed downstream, where all short-lived states had decayed, by absorption of
resonant radiation from a tunable dye laser (Fig. 3.10). The laser bandwidth was

~~
~e,,,,,

-----6~o

FIGURE 3.10. Level scheme for mercury. The upward-pointing lines show the route for producing
the initial level 7 3S1 used in the experiment of Fry and Thornpson'P" as starting point of the atomic
cascade.
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narrow enough that the 200Hg isotope could be selectively excited. The polarizers
used in this experiment were of the pile-of-plates variety, and the earth magnetic
field in the interaction volume was reduced to less than 5 mG.

Since the initial state of the cascade had J = I, it was necessary to take into
account the possibility of unequal population of, and coherence between, the
initial Zeeman sublevels, which Fry and Thomson did by measuring the
polarization of the 435.8-nm radiation. Allowing for such effects and considering
the transmission efficiencies of Table 3.5, they predicted OQM = 0.294 ± 0.007,
but experiment gave 0 = 0.296 ± 0.014, in agreement with quantum theory but
in violation of Freedman's strong inequality.

5. Aspect et al. Aspect, Grangier, and Roger(35) (AGR) used the 551.3-nm and
422.7 -nm photons from the (0, 1, 0) cascade of calcium. In their case the calcium
atoms were excited to the 4p2 I So by a nonresonant two-photon absorption
process, using a krypton-ion laser beam of wavelength 406 nm and a dye laser
beam tuned to 581 nm, both laser beams being at right angles to the calcium
atomic beam emitted from a tantalum oven. The laser beams were focused at the
interaction region to provide a source about 60 J.l in diameter by 1 mm long. The
density varied between 3 x 10I0cm - 3 and 10I0em - 3, resulting in cascade rates
equal to or higher than 4 x 107

S - I. Selective excitation of the 40Ca isotope of
calcium prevented the polarization correlation from being reduced by hyperfine-

a,sf

!\ r. r
0·4 \ f \ I

'I II, I I, .. \
... l \ I

\ I' \ I
I, / 1,\ ,;1
'\ ..

;

\ /
'IV' ~!. (I,b)

DEGREES

o 190 270 360

FIGURE 3.11. Normalized coincidence rate as a function of the relative orientation of the
transmission axes of the polarizers in the experiment of Aspect et al.(351 The solid curve is the
quantum-theoretical prediction.
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structure effects. The photons from the cascade were analyzed by polarizers of the
pile-of-plates type and filters in much the same way as in previous experiments.

The high atomic density of the source generated coincidence rates up to
100 s - 1, allowing a 1% statistical accuracy in only 100 s counting time.
Measuring R(22n,R(67n, and Ro, AGR obtained 8 = 0.3072 ± 0.0043, in
agreement with the quantum-mechanical prediction of 8QM = 0.308 ± 0.002 but
in violation of Freedman's (strong) inequality by more than 13 standard devia
tions .

6. Aspect et al. In 1982, AGR(16) performed an experiment, originally suggested
and analyzed by Garuccio and Rapisarda.i' " using two-channel polarizers instead
of the previous one-channel pile-of plates types. Each polarizer was a polarizing
cube, built using the properties of dielectric thin films and antireflection coated
and was rotatable about the observation axis. The arrangement allowed the
quantity Eta , b) defined in Eq. (95) to be measured directly in a single run, using
a fourfold coincidence technique for each of the four relative orientations of the
polarizers: (a, b), (a, b'), (0', b), and (0', b').

If the left side of the (strong) inequality (103) is called S, AGR found
experimentally that S = 2.697 ± 0.015, in violation of (103) itself but in full
agreement with the quantum-mechanical prediction SQM = 2.70 ± 0.05.

7. Aspect et al. In all experiments described so far the transmission axes of the
polarizers were held fixed during every set of measurements. Thus, in principle,

E(a,b)

. . . .. . .

' 0 .

·5

(a,b)

6030
01----~_-+_ __4--'!':-+---+---+--_____1

goO

"5

o .

-1
' . ' 0

FIGURE 3.12. Correlation function Eta, b) as a function of the relative angle between the
transmission axes of the polarizers in the experiment by Aspect et al.<' 6) The squares are the
experimental points with error included. The dashed curve is the quantum-theoretical prediction.
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there was the possibility of an exchange of information between the two
polarizers with a velocity not exceeding that of light. Such a possibility, although
very unlikely given the known nature of interactions could at least, in principle,
be ruled out if the settings of the polarizers were changed in a time shorter than
the time of flight of the photons from the source to the polarizers. In the
experiment performed by Aspect, Dalibard, and Roger(28) (ADR), an optical
switch rapidly redirected the light incident from the source to one of two
polarizing cubes on each side of the source (Fig. 3.13). In contrast to the
previous experiment, only the transmitting channels of the polarizing cubes were
used. Switching the light was obtained by a Bragg reflection from an ultrasonic
standing wave in water. The light was completely transmitted when the amplitude
of the standing wave was zero and was almost fully deflected through 10mrad
when the amplitude was a maximum. Switching between the two channels
occurred about once every IOns, and since time, as well as the 5-ns lifetime of
the intermediate level of the cascade, was smaller than Lie (40ns), where
L = 12m was the separation between the two switches and c is the speed of
light, a detection event on one side and the corresponding change of orientation
on the other side were separated by a spacelike interval.

In the ADR experiment the coincidence rates were only a few per second,
with an accidental background of about 1 per second. If U is the intermediate

FIGURE 3.13. The ADR experiment with optical switches.(28)The switching devices C1 and ClI are
followed by differently oriented polarizers. The arrangement was thought to be equivalent to one in
which a single polarizer on each side is switched quickly between two different orientations. The
distance L was 12m.
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quantity in the (strong) inequality (157), ADR experimentally found
U = 0.101 ± 0.020, in clear violation of (157) itself but in agreement with the
quantum-mechanical prediction UQM = 0.112.

Although in practice the switching was periodic rather than random, the
switches on the two sides were driven by two different generators at different
frequencies, and it was assumed that they functioned in an uncorrelated way.
In fact this situation can hide a conceptual difficulty as was shown by
Zeilinger.(36)

Finally it should be noted that some criticism(37) of the AGR and ADR
experiment has been raised on the grounds that there may have been significant
resonance trapping due to the high density of the calcium source. A reply to these
criticisms was given by Aspect and Grangier.(38)

8. Perrie et aL Perrie, Duncan, Beyer, and Kleinpoppen'I" (PDBK) measured for
the first time the polarization correlation of the two photons emitted simulta
neously by metastable atomic deuterium in a true second-order decay process.
Single-photon decay from the 281/ 2 state of deuterium is forbidden, and the main
channel for the deexcitation is by the simultaneous emission of two photons that
can have any wavelength consistent with energy conservation for the pair.
However, because of the absorption in oxyen, the observation window in practice
was limited between 185 and 355 nm.

In the PDBK experiment a l -keV metastable atomic deuterium beam of
density about 104 em-3 was produced by charge exchange, in cesium vapor, of
deuterons extracted from a radio-frequency ion source. Electric field prequench
plates upstream from the observation region allowed the 281/ 2 component of the
beam to be switched on and offby Stark-mixing the 281/2 and 2PI /2 states, and at
the end of the apparatus the beam was fully quenched so that the resulting Lyman
signal could be used to normalize the two-photon coincidence signal. The two
photon radiation was collected and collimated by a pair of lenses, and the
polarizers were of the pile-of-plates type.

1---- 28
1/2l- -- h~ _

10.2 eV

1
FIGURE 3.14. Level diagram for atomic deuterium, used in the experiment of Perrie et a/.(39)

Hyperfine structure has been neglected . Photonic frequencies VI and v2 can have any value, provided
only that hVI + hV2 = 10.2 eV, where h is Planck's constant.
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Measuring R(22n,R(67n, and Ro, PDBK obtained 11 = 2.268 ± 0.010,
in agreement with the quantum-theoretical prediction 11QM = 0.272 ± 0.008, but
in violation of Freedman's strong inequality by slightly more than two standard
deviations.

In an extension of this last experiment,(4 0) the circular-polarization correla
tion was measured by placing achromatic quarter-wave plates in each detection
arm between linear polarizer and source. The obtained results did not violate
Freedman's inequality and would have disagreed with the quantum-theoretical
predictions if the quarter-wave plates had been assumed to be perfectly achro
matic. With the introduction of a considerable degree of achromaticity, PDBK
could reconcile their observations with theory, considering also imperfect
parallelism of the incoming photons. It is surprising, however, that the only
two measurements of circular polarizations in EPR experiments (the present one
and the already discussed Clauser experimenr'") led to results difficult to
reconcile with quantum theory.

3.5.3 Empirical Falsification of the Furry Hypothesis

We shall now show that quantum-mechanical factorizable vectors for atomic
photon pairs always satisfy Bell-type inequalities, not only of the weak but also of
the strong kind. Consider a typical EPR experiment performed with polarizers
and detectors, using a source producing correlated (ex,~)-pairs of photons .
Observables corresponding to the action of the polarizers are represented by
A(a) and B(j,), where a and j, are unit vectors in the x-y plane, that denote the
directions of the transmission axes of the polarizers on the left (photon ex) and
right (photon ~). Eigenvalues of A, Bare ±l , where ±I corresponds to photons
having polarization parallel to the transmission axis, while - I corresponds to
those having polarization perpendicular to the transmission axis. Let the eigen
vectors of A and B be la±) and Ib±), respectively. Then, in terms of the linear
polarization basis vectors [x) and lY),

la+) = cos Salxa) + sin SalYa)

la-) = - sin SaIxa) + cos SaIYa)

Ib+) = cosS~lx~) + sinS~lY~)

Ib-) = - sin S~ Ix~) + cos S~ lY~)

where Ixa} and lYa} denote polarization states on the left, Ix~} a~d IY~} on the
right, and Sa and e~ are the angles be~een the x-axis and aand b respectively.
The self-adjoint operators A(a) and B(b) satisfy

A(a)la±) = (±l)la±)

B(b)lb±} = (±l)lb±)
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Joint probabilities of detections (after passage through the polarizers) can then be
written as (perfect polarizers are considered for simplicity):

ro(a+ , b+) = /« b+ )(a+ )I'P }l211allp (167)

where ll ex and IIp are the efficiencies of the photodetectors on the left and right ,
respecti vely, and satisfy

Take, for instance,

o< ll ex ' IIp S 1

I'P) = lu}Iv}

(168)

(169)

(171)

(170)

as a factorizable state vector of the photon pair with lu} and Iv} describing photon
Ct. and photon ~, respectively. Since one can always write

lu} = cos <i'exlxex} + sin <i'exIYex}

Iv} = cos <i'p Ixp} + sin <i'p lYp}

from (165) and (170), it follows that

(a+lu) = cos(9ex - <i' ex), (b+lv) = cos(9 p - <i'p)

which leads to

with

Obviously

ro(a+, b+) = Dex(a+)Dp(b+)

Dex(a+) = cos2(9ex - <i'ex)ll ex

Dp(b+) = cos2(8p - <i' /l )11 1l

(172)

(173)

(174)

(175)

(177)

Next use the Clauser-Home lemma (72)-(73), from which one can deduce
physically meaningful inequalities by making the identifications

x = Dex(a+), x' = Dex(a'+)

Y = Dp(b+), y' = Dp(b'+)

The inequalities (174) being satisfied if a' , b' replace a, b, respectively, one gets,
by comparing (71)-(72) with (174) and using (175),

X = ll ex ' Y = IIp (176)

Inequalities (73) then become

-llex llll S r - Dex(a'+ )ll ll - llexDp(b+) S 0
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where

r = oo(a+, b+) - oo(a+, b'+) + 00(0'+, b+) + 00(0'+, b'+) (178)

Define other double-detection probabilities with one or both polarizers
removed as follows:

oo(a+, 00) = D,io'+)11~

00(00, b+) = 110:D~(b+)

000 = 110:11~

(179)

where 00 indicates that the corresponding polarizer has been removed. In place of
(177) one can now write

-000 + 00(0'+,00) + 00(00, b+) ~ r ~ 00(0'+,00) + 00(00, b+) (180)

The later are exactly the strong inequalities used in the experimental study of the
EPR paradox. We have thus shown that factorizable state vectors necessarily
satisfy the strong inequalities derived from local realism in conjugation with ad
hoc additional assumptions. That such state vectors also satisfy the weak
inequalities is well known.

In actual experiments it has been conclusively observed that "strong"
inequalities are violated in nature, which implies that a factorizable state vector
can never be taken as a valid description in an EPR-type situation.

The foregoing conclusion can also be verified to be true if a set S of
correlated quantum systems (0(, ~) is described by a mixture of factorizable state
vectors l'1JI)' 1'1J2)"' " l'1Jk) given by

with

l'1Jl) = IUl)lvl)

1'1J2) = IU2) IV2)

with probability PI

with probability P2

with probability Pk

(181)

PI + P2 + . . . + Pk = I (182)

All Eqs. (167}--{180) can be repeated with the insertion of an index
i (I ~ i ~ k) for the subset S; ofS having state vector 1'1J;) and relative population
Pi' In place of (180), one now gets

-roo + oo;(a'+, 00) + 00;(00, b+) ~ T, ~ 00;(0'+,00) + 00;(00 , b+) (183)
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where roo is the same as in (179) and

ro;(a'+. 00) = D;a(a'+)l'l~

ro;(oo, b+) = l'laD;~(b+)

r ; = ro;(a+, b+) - ro;(a+, b'+) + ro;(a'+. b+) + ro;(a'+. b'+)

with

ro;(a+. b+) = D;a(a+)D;~(b+)

and so on. In (184) and (186) one has

D;a(a+) = cos2(9
a - q>;a)l'la

D;~(b+) = cos2(9~ - q>;~)l'l~

137

(184)

(185)

(186)

(187)

(188)

where 9<X , 9~ are given in (165) and q>;a' q>;~ are defined by the equations

Iu;) = cos q>;alxa) + sin q>;alYa)

Iv;) = cosq>;~lx~} +sinq>;~lY~}

The strong inequality (183) is a consequence of the Clauser-Horne lemma (72)
(73), of identifications similar to (175) with the extra index i for the ro functions,
and of the inequalities (174), which are satisfied by D;a and D;~ as well, as one
can immediately check from (187).

All the double-detection probabilities for S can be obtained as weighted
averages of the corresponding probabilities for the subsets S;. By writing

k

<1>a(a'+. 00) = L p;Dicx(a'+, 00)
;=1

k

ro~(oo, b+) = L p;D;~(oo. b+)
;= 1

k
ro(a+. b+) = L p;D;(a+, b+)

;=1

(189)

one gets, by direct averaging of (183) and (185),

-roo + ro(a'+.00) + ro(oo. b+) ::: f ::: roea'+.00) + roe00. b+) (190)

where

f = ro(a+. b+) - ro(a+, b'+) + ro(a'+, b+) + ro(a'+, b'+) (191)

Obviously (190)-(191) is the strong inequality for the mixture (181) . Its validity
for all conceivable mixtures of factorizable state vectors means that the hope
entertained in the past by several important authors (e.g., see Jauch,(41) de
Broglie,(42) and Piccioni(43») that the solution of the EPR paradox could be
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found in spontaneous factorization of quanum-mechanical "entangled" state
vectors is actually untenable, because experiments have shown conclusively
that the strong inequality is violated.

3.5.4. Inequality for Parametric Down-Conversion Experiments

In this section it will be shown that the factorizable state vector produced by
a beam splitter placed on the paths of parametric down-converted photons
violates some inequalities, deduced from local realism, that are more stringent
than those normally used in the discussion of quantum nonlocality.

In the last few years the parametric down-conversion of light has been
widely used in quantum optics . The signal and idler photons produced in a
nonlinear crystal are highly correlated in momentum and in polarization. The
setups used in the EPR parametric down-conversion experiments performed up to
now are very different(44-50) but most share the feature that the state vector used
to test quantum mechanics is factorizable. The most important consequence
of the quantum-mechanical description of correlations with nonfactorizable
("entangled") state vectors is of course the possibility of violating local realism.
The use of factorizable state vectors, instead of entangled ones, can therefore be
questioned as a proper way to test local realism versus quantum mechanics.(51 ,52)
The reason, seen in Section 3.2.2, is that every factorizable state vector satisfies
Bell's inequality. This is technically correct , of course, but it can be shown(53) that
an inequality very similar to Bell's can be proved with an upper limit I (instead of
2), which is violated by the consequences of the factorizable state vector relevant
to the parametric down-conversion experiments.

R

P

FIGURE 3.15. Setup of an EPR experiment with pairs of photons from parametric down-conversion
in a KDP crystal. Double arrows indicate states of polarization. Photons are reflected on the mirrors
M1 and M2 and cross the beam splitter BS. The two-way polarizer PI (P2) splits the photon trajectory
into two, on which are placed the photon detectors D li and D I2 (D2\ and Dn ).
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The section has three aims: (i) to apply local realism to photon pairs produced
in parametric down-conversion and obtain, for this case, a new inequality more
stringent than the conventional Bell inequality; (ii) to prove that the relevant
quantum-mechanical state vector, even if factorizable, violates this new inequality;
(iii) to stress that also in this case the supplementary assumptions play an essential
role in the published experimental attempts to discriminate between local realism
and quantum mechanics. The arguments of Ref 53 will be followed, with the
conclusion that parametric down-conversion experiments can be used to compare
the predictions of local realism with the existing quantum theory if and only if the
new inequality given here, and not the conventional one, is applied.

Since the conceptual situation is very similar in most of the mentioned
setups, attention will be focused on the experimental setting used in Ref. 16 and
shown in Fig. 3.15. Extension to the other situations is straightforward. A laser
beam impinges on a nonlinear type I crystal, e.g., of potassium dihydrogen
phosphate. Laser photons are down-converted to pairs of photons with the same
polarization, which propagate in different directions . The special pairs of the
degenerate case (same frequency) are selected, and the polarization of one of the
photons is rotated 90° by a wave plate. The two photons, after reflecting on two
mirrors, are directed to the opposite sides of the polarization-independent beam
splitter (Fig. 316). The state vector of the emerging pair is

which is clearly a tensor product. Here IXi) [lYi)] is the polarization state along the
x [y] direction for the photon in the ith output channel of the beam splitter
(i = 1. 2), and Rx ' Ry • Tx ' and Ty are the reflectivities and transmittivities of the
beam splitter.

L------""7"'I:---------' BS

FIGURE 3.16. Signal (s) and idlder (i) photons arising in parametric down-conversion processes are
directed toward the opposite sides of a beam splitter BS. The emerging beams 1 and 2 are described (in
part) by a quantum-mechanical two-photon entangled state.
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After reorganising terms the state vector can be written in the form

1'iI) = jTxTy1XtY2) + jRxRylx2Yt) - ijTxRylxlYl) + iJRxTyIX2Y2) (193)

which represents the four possibilities for the two photons that impinge on the
beam splitter: signal and idler transmitted, signal and idler reflected, signal
transmitted and idler reflected, and signal reflected and idler transmitted. In the
case of a 50-50 beam splitter the square-root coefficients appearing in (193) are
all 112, and the state vector therefore becomes

1'iI) =Hlx tY2) + IX2Yl) - ilxlYl) + ilx2Y2)]

We have the following predictions if perfect detectors are used :

(194)

[PI] In 25% of the cases there are no counts on path I because the
component IX2Y2) of 1'iI) represents two photons present on path 2.

[P2] In another 25% of the cases there are no counts on path 2 because the
component IXIYI) of 1'iI) represents two photons present on path 1.

[P3] In the remaining 50% of the cases there are always coincident counts
on paths I and 2 owing to the presence in 1'iI) of the IXIY2) and IX2Yd
components.

[P4] As a consequence of [PI]-[P3] the probability of a double nondetec
tion on the two paths is zero.

These predictions are clearly nonparadoxical and therefore fully acceptable in the
local realistic approach. In fact, all the results obtained here are based on [P1]
[P4]. In particular, a more stringent upper limit for Bell's inequality will be
obtained, a result possible only because the specific situation represented by [P1]
[P4] is faced. The new bound does not hold in the general case, for which Bell's
inequality is perfectly adequate.

The problem of attributing (local) elements of reality to a statistical
ensemble, given its quantum state, can be solved by using the commonly accepted
EPR "reality criterion" : given a quantum state for a system, if it is possible to
predict with certainty (and without perturbing the system) the value of a physical
quantity, then there exists an element of reality A. belonging to the system, which
corresponds to that physical quantity.

The physical quantity to be considered in the present case is photon
observability on paths I and/or 2 of Fig. 3.16. To start with, one should realize
that the state vector (194) is totally indistinguishable from the mixture

I'ilo) = [IXIY2) + IX2Yt )]/ "fi in 50% of the cases

I'ilt) = IX1YI) in 25% of the cases (195)

1'il2) = IX2Y2) in 25% of the cases
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because the vectors /\jIo), I\jI J)' and 1\jI2 ), considered as parts of 1\jI), can never
interfere with one another when the paths are spatially separated after the
interaction with the beam splitter. Therefore, all conclusions concerning the
physical situation described by (195) apply to (194) as well.

One can predict with certainty that perfect detectors placed on paths 1 and 2
(with or without polarizers) will obtain coincident detections in that 50% of the
cases described by l\jIo). Applying the reality criterion, one concludes that
elements of reality 1.0 belong to 50% of the photon pairs, as a consequence of
which these pairs have photon observability on both paths.

One can also predict with certainty that perfect detectors placed on path 2
(with or without polarizer) will detect nothing in that 25% of the cases described
by 1\jI1). Applying the reality criterion, one concludes that new elements of reality
AI belong to 25% ofthe photon pairs, as a consequence of which these pairs have
no observability on path 2.

Finally, one can predict with certainty that perfect detectors placed on path 1
(with or without polarizer) will detect nothing in that 25% of the cases described
by 1\jI2). Applying once more the reality criterion, one concludes that new
elements of reality 1.2 belong to 25% of the photon pairs, and hence these
pairs have no observability on path 1.

Given that l\jIo), l\jIt) , and 1\jI2) have different physical properties, in the local
realistic approach they are described by different elements of reality, that is, by
values of A E A belonging to different subsets of A:

l\jIo) => A= A.o E Ao
1\jI1 ) => A = AI E A I

\\(12 ) => A. = 1.2 E A2

(196)

(197)

Naturally, the different values of A are expected to appear at random, as occurs in
general in quantum mixtures. The overlap ofany two of these subsets is zero, and
their union must be the entire set: A = Ao U Al U A2• If p(A) is the probability
density, the normalization condition must hold:

Lo. p(A) = 1

From (195) it follows that a priori probabilities of finding a given value of A in
Ao, AI ' or A2 are respectively given by

(198)

which are consistent with (197). Naturally Ao, Al and A2 are totally independent
of the usual detection parameters (introduced later). For perfect detectors , the
choice of a photon to remain undetected cannot be made when it interacts locally
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with a polarizer, because a nonzero probability ofjoint nondetection would exist,
in contradiction to the nonparadoxical quantum-mechanical prediction [P4].

Deterministic Proof

The hidden variable A is assumed to fix also the nonzero values of Bell's
observables : Therefore we write A(a, A) and B(b, A) for the trichotomic (= ±l, 0)
observables measured on the two photons, assuming that 0 means no detection (in
coincidence with a detection on the other channel).

In principle, "anomalous" values of A(a, A) and B(b, A) should be consid
ered when A E AI' A2, since (194) predicts double counts to appear on path I
[path 2] when AE A I [A E A2]. But these one-sided double counts, however
represented in the formalism, would in all cases be multiplied by the value 0 of
B(b, A) [A(a, A)]. In fact, when A E AI' A2, no photon is detected on one of the
two paths, a situation formally represented by

A(a , A) =A(a', A) = 0

and

B(b , A) = B(b' , A) = 0

Consequently, we will ignore such anomalous values since they do not contribute
to the correlation function of A and E, which is

P(a, b) =LdA p(A)A(a, A)B(b, A) (199)

Therefore, definition (199) can be rewritten with A replaced by Ao. After
doing this the observables A(a, A) and B(b, A) are such that when a detector gives
a result, this can only be ± 1. Therefore,

IA(a, 1..)1 = IA(a' , 1..)1 = IB(b, 1..)1 = IB(b', 1..)1 = 1 (200)

It is a simple matter to show that

IP(a, b) - P(a, b') +P(a' , b) + P(a' , b')1

~ J dA p(A)[IA(a , A)IIB(b. A) - B(b', 1..)1
Ao

+ IA(a' , A)IIB(b, A) + B(b' , 1..)1] (201)

so that from Eq. (200) one gets

IP(a, b) - P(a , b') +P(a', b) +P(a', b')1 ~ 2J o: p(A) (202)
Ao
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IB(b, A)I = IB(b', A)I = 1 => IB(b, A) - B(b', A)I + IB(b, A) +B(b', A)I = 2

By virtue of (198), inequality (202) becomes

IP(a, b) - P(a, b') +P(a' , b) + p'(a', b')1 ::::: 1 (203)

which is Bell's inequality for the physical situation described by the vector (193).
The restrictions coming from local realism are now expressed by an upper limit in
(203) that is 50% lower than the well-known limit 2 of the traditional form of
Bell's theorem.

Probabilistic Proof

Probabilistic local realism was formulated in previous sections, and it was
shown that the joint probabilities of the two quantum systems satisfy a factoriz
ability condition with a the probability density p depending, in general, on a
discrete index A and on the chosen observables : p = p,,(a, a', b, b'). In place of
Eq. (197) one has now

(204)

where x = {a, a', b, b'}.
Let p+(a, A) [p_(a, A)] be the detection probability of the first photon on the

ordinary [extraordinary] path outgoing from the first polarizer with axis a and
belonging to the Ath homogeneous subset, and let q±(b, A) be similar probabil
ities of the second photon outgoing from a polarizer with axis b. If p+(oo, A) and
q+(00, A) are the detection probabilities of the first and second photon, respec
tively, when the polarizers are removed, for ideal instruments one has

(205)

and

(206)

From [P1]-[P3] it follows that p+(oo, A) = 1, 1,0 in E Ao, AI' A2, respectively,
and that q+(oo, A) = I, 0,1 if A E Ao, AI' A2, respectively. Thus

p+(oo, A)q+(OO, A)= 0 if A E Al U A2 (207)

For the overall joint detections one can write:

(208)
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Defining the correlation function, as usual, as

Pea,b) =O)(a+, b+) - O)(a+, b-) - O)(a- , b+) + O)(a-, b-) (209)

one gets

where

Pea,b) = Lo. p).(x)p(a, A)q(b, A) (210)

pea, A)=p+(a, A)- p_(a, A) and q(b, A) = q+(b , A) - q_(b, A) (211)

Notice that from (205) and (206) it follows that

w(a, A)I :s p+(oo, A) and Iq(b, A)I :s q+(oo, A) (212)

Naturally (212) holds for all possible a and b. Therefore,

IP(a, b) - pea, b') + pea', b) +Pea', b')1

:s L p).(x)[W(a, A)llq(b, A) - q(b', A)I + w(a', A)llq(b, A)+ q(b', A)I]
).EA

:s L p).(x)p+(oo, A)[Iq(b, A) - q(b', A)I + Iq(b, A) + q(b' , A)I] (213)
).EA

the last step being a consequence of(212). Two real numbers q(b, A) and q(b', A)
satisfying (212) give

Iq(b, A) - q(b', A)I + Iq(b, A)+q(b', A)I :s 2q+(00 , A) (214)

as one can easily show. Therefore,

IP(a, b) - pea, b') + pea', b) + pea', b')1 s 20)(00, (0) (215)

where

0)(00, (0) = L p).(x)p+(oo, A)q+(oo, A)
).EAo

(216)

is the joint detection probability when both polarizers have been removed. In
(216) the sum is taken over AE Ao only, because of (207). But in AO one has
p+(oo, A) = q+(oo, A) = I, so

0)(00,00)= L p).(x)=! (217)
).EA o

because of (204), and inequality (215) is then identical to (203).
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It is possible to set the new inequality (203) in a form similar to that given in
1969 by CHSH . In fact, using (205) and (206) in (208) one has

ro(a+, b+) + ro(a+, b-) = ro(a+, (0), ro(a+, b+) + ro(a-, b+) = ro(oo, b+)

(218)

where

ro(a+, (0) = L p,..(x)p+(a, A)q+(oo, A)
A,EAo

ro(oo, b+) = L PA,(x)p+(oo, A)q+(b, A)
A,EAo

Furthermore, one can easily obtain

(219)

ro(a- , b-) = ro(a+, b+) - ro(a+, (0) - ro(oo, b+) + ro(oo, (0) (220)

By inserting (218) and (220) in (209) one gets

P(a, b) = 4ro(a+, b+) - 2ro(a+, (0) - 2ro(00, b+) + ro(oo, (0) (221)

which contains only joint detection probabilities on the ordinary rays, also useful
in the case of one-way po1arizers. The latter equation, inserted in (215), leads to

-1 - 2ro(00, (0) B 1 - 2ro(00, (0)
---"'-----'- < < ------'-----...:.

4 - - 4

where

B = ro(a+, b+) - ro(a+, b'+) + ro(a'+, b+)

+ ro(a/+, b'+) - ro(a/+, (0) - ro(oo, b+)

Remembering (217), Eq. (222) becomes

-! S B S 0

(222)

(223)

(224)

This inequality can be shown to be violated by the quantum-mechanical
predictions following from the state vector (194).

It is important to remember that the previous results are strictly related to the
initial assumptions of perfect detection in the apparatus. Indeed if one supposes,
as in the actual experiments, that the detection process has a quantum efficiency
11 S 1, one can show that the upper limit of (224) becomes larger than zero. In
fact, the quantum-mechanical joint detection probabilities are in this case all
multiplied by 112 ; i.e., quantum mechanics assumes that the subset of photons
generating coincidences arising from a random process independent of the
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correlation state of the pair. Therefore, if the same assumption is made in the local
realistic approach, one must write

so that (222) becomes

-1 - 11 2 I - 11 2
---<B<---

4 - - 4

(225)

(226)

where the lower and upper limits depend on the quantum efficiency 11.
In conclusion, it has been shown that in some situations it is possible to

obtain a more stringent Bell-type inequality, which is violated by the factorizable
state produced in a type I parametric down-conversion source. Even in this case,
the low quantum efficiency of the detectors used in the performed experiments
does not allow one to draw any conclusion concerning the violation of local
realism.
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Chapter 4

The EPR Paradox in Particle Physics

A more critical scrutiny of the incompatibility between quantum theory and local
realism can come from the study of the EPR paradox in domains where highly
efficient particle detectors are used and the additional assumptions are therefore
not needed. An appealing possibility is the decay of a JPc = 1-- vector meson
into a pair of neutral bosons. The copious production of <I> meson decays into two
neutral kaons in a <I> factory accelerator seems to provide a very useful way of
studying the EPR problem (Fig. 4.1). An experiment of this type is characterized
by (a) almost perfect angular correlation between the two kaons, (b) nearly 100%
efficient high-energy particle detectors, and (c) absence of noise. B factory
accelerators also seem to open very interesting new possibilities. These ideas,
other proposals, and actually performed experiments on the EPR paradox in
nuclear physics are reviewed in this chapter. The discussion will be limited to CP
conserving processes, which have a larger probability and seem to allow for
easier ways of testing local realism versus quantum mechanics.

4.1. SOME FEATURES OF PARTICLE PHYSICS

In studying the transformations of the subnuclear world, one must bear in
mind that all conceivable processes not violating any conservation law do take
place, in competition with one another. Among these laws those concerning
energy, momentum, angular momentum, and electric charge are well known. The
development of subnuclear physics has shown, however, that other conserved
"quantum numbers" exist, such as the fundamental baryon number, isotopic spin,
strangeness (only approximately conserved but very important), and so on. These
quantum numbers, unknown in the macroscopic domain, are the most elementary
and fundamental properties of material reality known today. Even if their
existence has been irreversibly established, their nature and necessity remains
little understood: a task offuture research could be to reach a better understanding
of them by following the line of thought of local realism.

149
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FIGURE 4.1 . Feynman diagram for the production of two neutral kaons in electron-positron
collisions via an intermediate <f> meson of mass 1020 MeV/ c2

.

4.1.1. Conservation of Energy and Momentum

In high-energy particle collisions it often happens that kinetic energy is
transformed into the energy equivalent of a mass. Consider, for example, the
process

(1)

(2)

in which two colliding protons give rise in the final state to two other protons,
identical to those of the initial state, and to a nO meson, whose mass is created
from the ..condensation" of part of the kinetic energy of the incoming proton. If
p;(i = 1, . . . , 4) are the energy-momentum four-vectors of the incoming (i = 1,2)
and outgoing (i = 3, 4) protons, the mass shell conditions

( )

2
2 E, 2 2

Pi =Pi .Pi = Pi . Pi - -;; = -m c

are satisfied, where Pi are E, momentum and energy of the ith proton and
m = 938 MeV/2 is the proton rest mass . Equation (2) is a relativistically
invariant condition; i.e. Pi and E, can be measured in any inertial frame and
the result is always the same.

The squared sum of two energy-momentum four-vectors is also invariant. If
one denotes quantities calculated in the center-of-mass system with an asterisk,
one has

(3)

because pf+p! = 0, by definition ofcenter of mass, if one writes W = Ef +E!
for the total energy.

One could-wrongly-believe that the energetic threshold of reaction (1) is
given by a kinetic energy of the incoming proton, which is equal to Ilc2

, where
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~ = 135 MeVIe? is the neutral pion mass. Actually such a configuration would
guarantee the conservation of energy but not that of momentum because the pion
and the final protons would be at rest in the laboratory and thus have a total
momentum zero, while the initial momentum is considerable when the kinetic
energy is ~c2.

The threshold condition must be taken in the center-of-mass system, where
the initial total momentum vanishes and is therefore compatible with three final
particles at rest in that system. Therefore reaction (I) is possible only if

W ~ 2mcz + ~cz (4)

From (3) it follows that

I
(PI +pz)z ~ - 2 (2mcz + ~cz)z

c
(5)

Now it is possible to use the invariance of the relativistic scalar product and
calculate the left side of (5) in the laboratory, where P2 =0 and Ez = me", One
easily obtains

(PI +PZ)2 = -2mTI - 4mzcz (6)

where T] = EI - me? is the laboratory kinetic energy of the incoming proton.
Substitution of (6) in (5) leads to the threshold condition

TI ~ 1\ = (2~ + ~~)cz ~ 280 MeV (7)

This prediction has received exact experimental confirmation: below T1 reaction
(I) does not take place; above it is easily observed.

This last result can easily be generalized to the case of two particles with
masses m I and m2, in general different, that collide and produce in the final state a
set of particles having a total rest mass M. If, for example, in the final state there

I
11[ °

I

FIGURE 4.2. One pion exchange contribution to the process of reo production in proton-proton
collisions.



152 CHAPTER 4. THEEPR PARADOX IN PARTICLE PHYSICS

TABLE 4.1. LaboratoryKinetic Energy Threshold for Some
InelasticProcesses

Reaction

P+P--+ P+P+lt°
P+P--+ P+A+K+
P+P--+ P+1:+ +~
P +P --+ P + :=;- +K+ +K+
It+ + P --+ A+K+ + It+

It- +P --+ 1:- + K+
K- + P --+ :=;- + K+
K- +P --+ cr +K+ +K+ +It-

Energetic threshold
(MeV)

280
1585
1790
3743
1013
904
662

3086

(8)

are three particles with rest masses m), m-, and m-, then M = ml +m2+m3' In
all cases the threshold for the inelastic process is

T -r _ M2 - (ml + m2)2 2
I 2: I - -----'----'---=-C-

2m2

Using the known particle masses.i'! from Eq. (8) it is easy to calculate the
thresholds of the reactions in Table 4.1.

The systematic agreement of these predictions with the empirical observa
tions forms the basis of a physicist's faith in the conservation laws of energy and
momentum. Furthermore, every experiment on elastic and inelastic collisions and
every spontaneous disintegration confirm the validity of these laws, especially
when the measurements imply an "overdetermined" reconstruction of the
kinematical variables of the final state. This is the case when the particles
taking part in a reaction are all electrically charged and, therefore, are all ionizing
and measurable. An example is the last reaction of Table 4.1, in which all
components of the final momenta are measured (they are 3 x 4 = 12) and their
sums are compared with the momentum components of the incoming kaon.

4.1.2. Families of Particles

A dozen different particles appear in the eight examples of inelastic
reactions of Table 4.1. These are subatomic systems endowed with the dual
nature (wave+particle) characteristic of quantum systems, so the name "parti
cles" is misleading. Furthermore, their large number makes it very unlikely that
they are elementary.

With respect to stability, elementary particles can be of three types:

I. Stable systems: proton, electron, photon, perhaps neutrinos. These
particles are stable because rigorous conservation laws prevent them
from disintegrating into a set of lighter systems. As an example, consider
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that the decay P ~ 1t+ + 1£+ + e: would conserve energy, momentum,
angular momentum, and electric charge; it never takes place because it
would violate the baryon number conservation law.

2. Metastable systems are muons, pions, neutron, hyperons, and many
others. They disintegrate spontaneously into lighter systems through
the weak interaction (1£0 and A0 through the electromagnetic interaction)
with low probabilities and correspondingly large lifetimes (large with
respect to the typical time of strong interactions: 10-23 s). .

3. Unstable systems, for example the resonance p of two pions, the <1>, which
is very important for the EPR paradox, and the numerous resonances of
the pion-nucleon type. These systems disintegrate immediately after
being formed by a strong interaction, with lifetimes typically about
10-23 s.

Stable and metastable particles are usually classified in four different groups:
leptons, fundamental vector bosons, mesons, and baryons. To each of these
groups is devoted one of the tables of this section. The review of particle
properties that we can afford to make in this section will necessarily be very
partial in several respects: much experimental and conceptual evidence will
therefore be sacrificed to simplicity.

In elementary particle physics the most important laws are the conservation
laws. The available energy-momentum spontaneously reorganizes itself into one
of the allowed forms of nature, as soon as the metastable or unstable form in
which it was aggregated disintegrates. The subnuclear world is thus dominated by
rigorous conservation laws, by some approximate conservation laws, and by a
continuous reorganization of whatever exists. The property of existing, i.e., of
being irreducibly real, must clearly be attributed to what is conserved in all
reactions, and much less to what can disappear. From such a point ofview electric
charge is much more real than the muon, to give an example, and momentum is
more real than velocity. The proton itself is less real than its baryon number: in
the second of the inelastic reactions of which we calculated the threshold, for
example, a proton disappears and is replaced by a lambda hyperon, which is
different from the proton but also endowed with baryon number. One should not,
however, go too far in denying the reality of what is not rigorously conserved;
after all, we ourselves are not. In the following the four known families of
particles are briefly reviewed.

4.1.2.1. Leptons

There exist three pairs of leptons: the electron, the muon, and the tau, each
with a corresponding neutrino. All have spin l The electron is by far the lightest
charged lepton, followed by the muon. Neutrinos could all be massless, but for
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s

, v,
Cl---.-----p

e

FIGURE 4.3. Apparatus used in the late thirties to study the decay ofcosmic rays "mesotrons" (early
name of muons). The large shield S was used to stop incoming electrons and photons. The circles
represent Geiger counters, and P is a plate in which some mesotrons stopped and decayed at rest
producing an electron (e) and a neutrino (v). The electronics counted events where the pulse produced
by the electron crossing the lower set of counters (C2) came between 1.5 and 20 Its after the pulse
produced by the mesotron crossing the upper set CI. The correct identificat ion of the muon as a
kind of heavy electron is due to Pancini, Piccioni, and Conversi (1945).

two of them the experimental upper limit of the rest mass is still rather high. It is
certain, however, that the three neutrinos differ physically. Table 4.2(1) (as in the
following ones'!') has four columns. The first contains symbols of the different
leptons, the second their masses in units of MeVfe2

, the third the lifetimes in
seconds, and the fourth the observed decays and their frequencies. For example
(0, 0 I) means that a decay takes place in 1% of all cases. If a particle can decay in
different ways, it is believed that the choice between the various channels
available is made at random at the time of disintegration. Why a particular tau
should choose to decay into e-Yevp another into lcrrovr , and so forth, remains to
be understood.

A third, very rare, decay of the muon has been observed, but Table 4.2 (as all
the following tables) lists only disintegrations having a probability not less than
I%. In the case of tau particles, which are much heavier; more than 20 different
decays have been observed. Table 4.2 lists only a few of them (covering 66% of
the total probability). Antileptons also exist, all different from the corresponding
leptons. The positron (antielectron), the antimu, and the antitau have positive
charge, but the same mass, the same spin, the same lifetime, and symmetrical
decays of the electron, muon, and tau, respectively. Charged leptons and
antileptons take part in weak and in electromagnetic interactions (but not in
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TABLE 4.2. Leptons

Symbol Mass (MeV/e2
) Lifetime (s)

v, <1 7 X 10- 6 stable
v~ <0.27 ?
v, < 35 ?
e 0.511 stable

11 105 2.20 x 10-6

r 1784 3.03 x 10- 13
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Decays (probabilities)

e-vev~ (0.99); e-vev~ 'Y (0.01)
e-vev, (0.18); ll-V~V, (0.18);
n-nov, (0.23); n-n+n-v, (0.07); etc.

strong ones), neutrinos and antineutrinos only in weak interactions (unless they
have hitherto unobserved magnetic moments).

4.1.2.2. Fundamental Vector Bosons

Fundamental vector bosons are spin-l particles. The photon (y) is the
quantum of the electromagnetic field, and W± and Z are the quanta of the
weak field. The classification of y, W±, and Z in the family of fundamental vector
bosons arises from a theoretical prejudice (probably well founded) concerning the
electroweak unification. It is remarkable that the existence of the heavy bosons of
this family was first predicted theoretically, then observed experimentally more or
less at the predicted values of the masses. At first sight W± and Z would appear to
be very different from the photon, owing to their very large masses and their very
short lifetimes (about 10 times smaller than the time required for light to cross a
proton!) . The decay channels of W± and Z are numerous: in Table 4.3 only the
three simplest ones are reported, both for Z and W+: anyway those of W- are
charge symmetrical to the reported ones. The y and the Z coincide with their
antiparticles, W+ and W- are each other's antiparticle .

4.1.2.3. Metastable Mesons

In Table 4.4 the metastable mesons with mass less than 2000 MeV/c2 are
listed. These particles all have spin 0 and negative parity. There are three 1t

TABLE 4.3. Fundamental Vector Bosons

Symbol Mass (MeV/e2
) Lifetime (s) Decays (probabilities)

'Y <3 X 10- 33 stable
w± 80600 10- 24 e+ve (0.10); Il+V~ (0.10); t+v, (0.10); etc.
Z 91160 10- 24 e+e- (0.03); 11+11- (0.03); t+t- (0.03); etc.
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TABLE 4.4. Metastable Mesons with mass less than 2000 MeV/c2

Symbol Mass (MeV /c2
) Lifetime (s) Decays (probabilities)

1t0 135 8.4x 10-17 2y (0.99) ; e+e- y (0.0 I) .
1t± 140 2.6x 10-8 l1+ V~ (1.00) .
Tjo 549 5.6 x 10-19 2y (0.39); 1t+1t-1t0 (0.24) ;

31t° (0.32); 1t+1t-y (0.05).
K± 494 1.2x 10-8 l1+v~ (0.63); 1t° l1+v~ (0.03);

1t°e+ve (0.05); 1t+1t0 (0.21);
1t+1t01t0 (0.02); 1t+1t+1t- (0.06).

~ 498 0.9x 10-10 1t+1t- (0.69); 1t01t0 (0.31).

K'1 498 5.2x 10-8 1t01t01t0 (0.22); 1t+1t-1t0 (0.12);
1t±l1'f v (0.27); 1t±e'fv (0.39) .

[)± 1869 l.l x 10-12 k°1t+ (0.03) ; k°1t+1t° (0.08) ;
K-1t+1t+ (0.08); etc.

DO 1864 4.2x 10-13 K+K- (0.05) ; K-1t+1t ° (0.12) ;
K-1t+1t+1t- (0.08); etc .

D± 1969 4.5x 10-13 KDK+ (0.03); 1t+1t+1t- (0.01) : <l>1t+ (0.03);S
<l>1t+1t0 (0.06) ; <l>1t+1t+1t- (0.01) ; etc .

mesons (pions, having charge +e, 0, -e), the neutral 11°, the four K±,K~, and K2
(where S = "short" and L = "long" refer to the lifetimes) called "strange," the
three D mesons called "charmed" (charge +e, 0, -e) having strangeness 0, and
the two Dt mesons both with charm and strangeness . The mesons of Table 4.4
are grouped in families of "isotopic spin" (also called isospin), in which the
electric charge is the variable physical quantity. Pions have isospin 1 (three charge
states), eta has isospin 0 (only one state), the K's are considered doublets (doublet
of particles, K+ and~ with strangeness +1, and doublet ofantiparticles, K- and
1(0 with strangeness -1); they therefore have isospin 1. Notice that K~ and K2 are
superpositions of~ and 1(0, in the quantum-mechanical sense. D+ and DO also
form a doublet (isospin 1); D- and DO are the doublet of the antiparticles . Finally
Dt is a singlet (isospin 0) having D'S as antiparticle.

For charged particles only the decays of the positive one are reported: the
negative case is symmetrical. The interaction determining the decays of nO and 11°
is the electromagnetic one: this explains the relatively short lifetimes. In all other
cases one is dealing with weak interactions. The family of bosons also includes
antiparticles : nO and 11° are their own antiparticles, n+ has n- as its antiparticle,
and so on.

4.1.2.4. Metastable Baryons

In Table 4.5 stable and metastable baryons whose mass is less than
2300 MeVfe2 are listed. All such particles have spin 1, with the possible
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TABLE 4.5. Stable and Metastable Baryons with mass less than 2300 MeV/c2
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Symbol

938
940

1116
1189
1193
1197
1315
1321
1672
2285

Lifetime (s)

stable
890

2.63 xlO- IO

0.80 x 10- 10

7.4 x 10- 20

1.48 x 10- 10

2.90 x 10- 10

l.64 x 10- 10

0.82 x 10- 10

1.91 x 10- 13

Decays (probabilities)

Pe- ve (1.00).
Pre (0.64); Nreo (0.36).
Preo (0.52); Ntt" (0.48).
Ay (1.00).
N n: (1.00).
Areo (1.00).
Are- (1.00).
AK- (0.68); n Ore- (0.24); n -reo (0.08).
rtc:«: (0.03); P[(Ore+re- (0.08); etc.

exception of the n, which could have spin t. There are two nucleons (charge +e ,
0), one A (uncharged, strangeness -I), three strange hyperons L (charge +e, 0,
-e, also with strangeness -I), two hyperons E (charge 0, -e and strangeness
-2), one hyperon n (charge - e and strangeness -3), and the "charmed" baryon
A~ . Baryons are also grouped in families of isotopic spin, in which, again,
electric charge is the variable physical quantity. Nucleons have isospin ! (two
charge states), A has isospin 0 (only one state), the L'S form a triplet (isospin I),
the E 's a doublet (isospin !),and the n a singlet (isospin zero). The A~ is also a
singlet (isospin 0).

Only the metastable baryons whose mass is less than 2300 MeV/ c2 have
been included in Table 4.5. The proton is absolutely stable, or at least its lifetime
is above 1031 years, that is, 1021 lives of the universe (with the Big Bang
conjecture the universe is calculated to be about 15 billion years old). When a
baryon decays there is always another baryon in the final state. This secondary
baryon can, in turn, be metastable, but at the end of all possible disintegrations
one is certain to find a proton. Many conceivable reactions, allowed by the other
conservation laws (energy, momentum, angular momentum, electric charge), but
which do not include a baryon in the final state, never occur. This empirical law is
formulated as "baryon number conservation" and is obtained by attributing to
each baryon a baryon number +I. To the corresponding antiparticles (antiproton,
antineutron, antilambda, ...) the baryon number -I is attributed. All baryons
share with the proton this mysterious and indestructible property. Leptons, vector
bosons, and mesons instead have baryon number o.

In strong interactions strangeness is always conserved. The reader can check
this for the eight inelastic reactions of Table 4.1: strangeness is 0, for example, in
the initial and final states of the reaction P +P ---+ P + L++ KO. In weak decays,
on the other hand, strangeness is not conserved: a K+, for instance, can decay into
1t+1t0 , final state with strangeness O.
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(9)

4.1.3. Nuclear Physics Experiments on the EPR Paradox

The first experiments on the EPR paradox were performed during the early
seventies in low-energy nuclear physics, using gamma rays from electron
positron annihilation and the elastic scattering of two protons. Soon it was
realized, however, that such experiments could not distinguish clearly between
local realism and quantum theory, essentially because no known instrumentation
can measure dichotomic observables of gamma rays and protons directly.

In the case of e+e: annihilation at rest, the resulting two photons have equal
and opposite momenta. In 1950, Yang(2) showed that a photon polarization
correlation arises as a consequence of invariance under rotations and reflection of
the axes (parity), and that the appropriate state vector is

I
1\jJ) = J2{IXIHY2) -lYI)lx2)}

where IXl)' lYI) (lx2)' lY2)) are the linear polarization states of the first (second)
photon along the x and y axes, respectively. As seen in the first chapter, eight
years later Bohm and Aharonov used the experimental confirmation by Wu and
Shaknov of the validity of such a description to rule out the Furry hypothesis.

In the experiment performed by Kasday, Ullman, and WU(3) positrons from a
64CU source were annihilated in a thin layer of material surrounding the source.
The annihilation y rays were emitted in all directions, but the two vertical
opposite directions were selected by a lead collimator before hitting two conical
Compton scatterers (Fig. 4.4).

The scattered photons entered two scintillation detectors, covered with
absorbers with a slit, such as to select photons at azimuthal angles <I> I and <1>2.
The three authors measured a quantity defined by

NIN l N2
R(<I>I' <1>2) = N NN

55 55 55

where N is the number of times the two photons scatter and are both detected, N1

the number of times the two photons scatter and only photon I is detected, N2 the
number of times the two photons scatter and only photon 2 is detected, and N55

the number of times the two photons scatter.
Theoretically in all cases an expression such as

was expected, but different theories predicted different values ofA and B, namely

A = I,
A = I,
A = I,

B = Bo quantum mechanics
B =Bo/ J2 upper limit of Bell's inequality
B = Bo/2 Furry's hypothesis
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FIGURE 4.4. Schematic view of the apparatus of Kasday et al .(3) for measuring polarization
correlations of e+e: annihilation photons. The positron source and the absorber are located near O.
The photons travel in opposite directions and strike the Compton scatterers SI and Sl. The counters
DI and D2 detect the scattered y rays. <1>, and <1>2 are the azimuthal angles of the scattered photons.

The experimental results were only compatible with the quantum-mechanical
values. However, Kasday himself pointed out in Varenna -" that Bell's limit was
not very meaningful for his experiment, because local hidden-variable models
could easily explain the obtained experimental results.

Another experiment using e+e: annihilation was performed in Catania by
Faraci, Gutkowski, Notarrigo, and Pennisiv". Their source was a 22Na positron
emitter enclosed in a Plexiglass container acting as an annihilator. Two plastic
scintillators acted as Compton scatterers. Their results disagreed significantly
with quantum mechanics and agreed with Bell's upper limit (Fig. 4.5). Further
more, a surprising "distance effect" was found: the photon polarization correla
tion tended to decrease with separation and seemed to suggest a slow transition
toward a mixture of factorizable states.

The puzzling result of this experiment''" stimulated further investigations
with e+e: annihilations, e.g., by Wilson, Lowe, and Butt(S) with a 64CU source of
pairs of annihilation quanta. These authors wondered whether the correlation
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2.0r--------------------------,

R(tp )

o 50 100 150

FIGURE 4.5. Results of the two-photon annihilation experiment of Faraci et 0/.(4) R(cp) is the
normalized angular correlation function dependent on the relative azimuthal angle cpoThe upper curve
is the quantum-mechanical prediction . The intermediate curve is the largest correlation function
allowed by Bell's inequality (assumed applicable) . The lower curve is the prediction of the Furry
model. Systematic errors of normalization are possible in this and in the other experiments on photons
from e+e: annihilation.

between the planes of polarization changed with source-scatterer separation. The
source was usually placed symmetrically between the two scatterers, but
measurements were also made for substantial differences in the separations. No
significant change in the correlation was observed over separations of up to 2.5 m
and over differences in separation ofabout 1m (Fig. 4.6). A similar result, using a
22Na positron emitter, was found a year later by Bruno, D' Agostino, and
Maroni.l'" who, again, could find no evidence of a decrease in correlation as
the distance between source and detectors increased.

Bertolini, Diana, and Scotti(7) in 1981 used 64Cu as a source of annihilation
photons. Their experiment differed from previous ones of the same type by the
use of semiconductor detectors which allowed them to determine accurately the
energies deposited by the photons in the scatterer and in the absorber of the
Compton polarimeter (Fig. 4.7). Good agreement with the predictions ofquantum
mechanics was found after the experimental results were corrected for several
secondary effects: multiple scattering, geometry of scatterers and detectors, etc.

Lamehi-Rachti and Mittig(8) carried out what has remained a unique
experiment of its kind, using low-energy proton-proton scattering. During the
collision between the two protons the interaction may be dominantly a "singlet"
state scattering process, with the two spins of the protons antiparallel. In practice
such a spin correlation experiment can be carried out by means of a twofold
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Ge(Lil

Pb

HPGe

FIGURE 4.7. Apparatus of the experiment of Bertolini et a/(7). Gamma rays from the annihilations of
positrons emitted by a 64Cu source are 90° scattered by two germanium targets toward two semiconductor
detectors. The distance between the scatterers ( ~84 ern) was larger than the longitudinal coherence length of
y rays for positron annihilation in copper.
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double-scattering experiment, as indicated in Fig. 4.8. A beam of 13.2-MeV
protons hits a hydrogen target. After scattering at e1ab =45° each proton strikes a
carbon foil and is scattered again. Four detectors for the doubly scattered protons
measure the coincidence count rates NLL , NRR, NLR, NRL ; where NLL is the number
of coincidences between the left counters L I and L2, etc. In this experiment about
104 coincidences were analyzed . The detectors ofone of the two carbon analyzers
are in the scattering plane, while those of the second left-right scattering analyzer
are rotated by an angle earound the axis defined by protons entering the second
analyzer. Lamehi-Rachti and Mittig defined the correlation function

(10)

FIGURE 4.8. Schematic experimental arrangement of Lamehi-Rachti and Mittig(Sl for the measure
ment of the spin correlation using two proton-carbon scatterings following the primary elastic scattering
of the incoming proton in the H target.
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FIGURE 4.9 . Experimental results for the spin correlation function found in the proton-proton
double-scattering experiment carried out by Lamehi-Rachti and Mittig.(8) The results are compared
with the limit s of Bell's inequality ( x) and quantum mechanics (QM).

The authors used an analogy with a double Stem-Gerlach experiment (not
performed) for which the quantum-mechanical correlation function is predicted
to be

PQM(f)) = -Cnn cos f)

Here Cnn is the Wolfenstein parameter, different from unity because of a
contribution of the triplet state to proton-proton scattering and known at this
energy to assume the value Cnn = -0.950 ± 0.015.

The authors were well aware that their results could not be compared directly
with Bell's inequality. Further assumptions were necessary, and they made the
following:

I. It is, in principle, possible to construct a perfect apparatus.
2. The outcomes of measurements are not affected by the fact that the

device used did not fulfil the conditions of spacelike separation.
3. The analyzing power and the transmission of the measuring apparatus can

be considered intrinsic constants of the apparatus.
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4. An upper limit for the contribution of triplet scattering can be obtained
from the scattering of polarized protons on polarized protons.

Once these assumptions were made the authors could conclude that "the
results are in good agreement with quantum mechanics and in disagreement with
the inequality of Bell." Of course, the validity of the above assumptions ,
especially the third one, is highly questionable .

4.2. REALISM AND THE NEUTRAL KAON SYSTEM

In this section the compatibility between local realism and the physics of
single kaons will be demonstrated. A physical model that reproduces the
quantum-mechanical predictions of "strangeness oscillations" will be described.
The irrelevance of Heisenberg's interpretation of the uncertainty relations and of
Bohr's complementarity principle will thus once more be demonstrated . The most
general local realistic treatment of single-kaon physics will be developed as well
and expressed by means of upper and lower bounds on the relevant probabilities.

4.2.1. Neutral Kaons in Quantum Theory

It is assumed here that charge conjugation-parity is conserved: the operator
CP commutes with the Hamiltonian. Otherwise the following is the standard
phenomenological approach to the quantum-mechanical theory of neutral kaons.
The CP eigenvalues are ± 1 and the eigenvectors are

and (11)

Thus, the small effect of CP nonconservation is neglected in (11), as in most of
this chapter, and the CP = ± 1 eigenstates are identified with the short and long
kaon, respectively.

The Hamiltonian H is regarded as being non-Hermitian to obtain an
exponential decrease of the amplitudes for undecayed kaons. Thus, H satisfies
the equations

where

and (12)

(13)
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In Eq. (13), 'ts and ms(YL and mL) denote the decay rate and mass, respectively, of
the S (L) meson. The useful numerical parameters in units fj = c = I are

'ts = (1.121 ± 0.002)x 1010 S-l , YL = (1.934 ± 0.015)x 107
S-l

11m = mL - ms = (0.535 ± 0.003)x 1010 S-l

Taking Ys as inverse time unit they can be written instead as

'ts = I,
I

11m =2.10

The time evolution operator is written in terms of the Hamiltonian H:

U(t) = exp{-iHt} (14)

where t is the particle proper time. Given that H commutes with CPo U(t) also
does and one has

IKs(t») = U(t)IKs(O») = e-aSIIKs(O»)

IKL(t») = U(t)IKL(O») = e-aL1IKL(0»)
(15)

where, because of (13), the complex exponent gives rise to an exponential
decrease of the wave function.

The second fundamental quantum number is strangeness, S. Its eigenvalues
and eigenvectors satisfy

and (16)

Strangeness does not commute with the weak Hamiltonian H. At time 0 the
relations

IKo(O») = ~[IKs(O») + IKL(O»)]

-0 I
IK (0») = J2[IKs(O») - IKL(O»)]

(17)

between the Sand CP eigenvectors hold. By applying the time evolution operator
to Eq. (17), one sees that the strangeness eigenvectors evolve into

IKo(t») = ~[e-asIIKs(O») + e-aL1IKL(0)}]

-0 1
IK «» = J2[e-asIIKs(O») - e-aL1IKL(0»)]

(18)
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(19)

where t is the kaon proper time. By inverting (17) and substituting the result into
(18), one easily obtains

IKo(t)) =t[e- iXs1+ e-iXL1]IKo(0)) +t[e-iXs1- e-iXL%~O(O))

17(°(t)) = He-iXS1- e-iXL1]IKo(0)) +He-iXS1+ e-iXL1]17(0(0))

Therefore, a kaon born with fixed strangeness evolves with time into a super
position of the two strangeness eigenstates. For example, the probability that a
IKo(t)) state (born as an S = +1 eigenstate) is observed to behave as an S = -1
neutral kaon is given by

! le-iXs1- e-iXL11
2 =He-Ys1+ e-YL1- 2e-YsI/2e-YLI/2 cosLlm t]

The interference term gives rise to the well-known phenomenon of "strangeness
oscillation." By inverting (17) and applying the time evolution operator, one
obtains

IKs(t)) =e-iXs1~[IKO(O)) + 17(°(0))]

IKL(t)) = e-iXL1~[IKO(O)) -17(°(0))]

(20)

For single kaons there is nothing paradoxical about (19)-(20). Indeed, in the next
two sections it will be shown that local realistic models exist that reproduce all the
empirical consequences of (19)-(20).

Neutral kaon pairs are generated in the decay of <I> mesons at rest produced
in electron-positron collisions:

e++ e" ~ <I> ~ KO + /(0

Given the quantum numbers of the <I> and the usual conservation laws of angular
momentum J, parity P, and charge conjugation C in its (strong) decay, the final
neutral kaons are described in quantum mechanics by the JPc = 1-- state vector

(21)

where a (left) and b (right) denote the opposite directions of motion of the kaons .
The small effect of CP nonconservation is neglected also in (21), as in most of
this chapter. The time evolution operator of vector (21) is the product of the
evolution operators for the individual kaons; hence, at times ta and tb one has

1
1\jJ(ta' tb)) = J2 {IKS)a IKL)b exp( -asta - aLtb) - IKL)aIKs)b exp( -aLta - astb)}

(22)
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Time 0 will be understood where no time is specified. The difference between the
two exponentials in (22) generates KOKO and 7(07(0 components . The probability
of 7(07(0 observation at times ta and tb is

PQM[7((ta); 7(tb)] =k(e-Ysla-YLlh + e-YLla-Yslh - 2e-Y(ta+1h)/2 cos /),.m(ta - tb)}

(23)

where y = 'ts + 'YL and /),.m = mL - ms is the KL - Ks mass difference. The right
side ofEq. (23) vanishes for ta = tb, as it must. In a real experiment the detection
of 7(0 's can be achieved either via hyperon production in two suitably placed
targets or via /),.S = /),.Q semileptonic decays at appropriate distances from the </>

decay region.

4.2.2. Reinterpretation of Quantum Probabilities

Local realism in the case of neutral kaons consists of the following three
assumptions :

1. If, without in any way disturbing a kaon, one can predict with certainty
the value of a physical quantity of that kaon, then there exists an element
of reality corresponding to this physical quantity (EPR reality criterion).

2. If two kaons are very far apart, an element of reality belonging to one of
them cannot be created by a measurement performed on the other
(locality) .

3. If at a given time t a kaon has an element of reality, the latter cannot be
created by measurements on the same kaon performed at time t I, if t I > t
(no retroactive causality).

It is very useful to consider those predictions of (22) to which the EPR
reality criterion can be applied. These are the strict anticorrelations in strangeness
S and in CPO If they are assumed to be exact the following conclusions hold:(9)

(i) Each kaon of every pair has an element of reality AI that determines a
well-defined value of CP (AI = ± I corresponds to CP = ± I, respec
tively).

(ii) Each kaon of every pair has an element of reality A2 that determines a
well-defined strangeness S (A2 ± 2 corresponds to S = ± I, respec
tively).

Furthermore, AI is a stable property, while A2 undergoes sudden jumps from
S =+I to S = -1, and vice versa, which are simultaneous for the two kaons of
every pair but occur at random times in a statistical ensemble of many pairs.



4.2. REALISM AND THE NEUTRAL KAON SYSTEM 169

The application of loca l realism to the physical situation described quantum
mechanically by (22) already represents a departure from quantum theory, at least
formally: no quantum-mechanical state exists , in fact, describing a kaon as having
simultaneously well-defined CP and S values. In the local realistic approach the
observables Sand Cp' described quantum mechanically by two noncommuting
operators, are simultaneously predetermined by elements of reality belonging to
any given kaon . This is the standard treatment of " incompatible" observables in
all " hidden variable" theories. The necessary codefinition of Sand CP can be
rigorously justified, as we have seen, by applying local reali sm to a kaon
belonging to a pair. Nevertheless, it is natural to assume that all kaons have
the same basic properties and to extend this codefinition to single kaons even
when they do not belong to an EPR pair. The following developments depend on
this natural extension.

One can easily reproduce the quantum-mechanical predictions for strange
ness oscillations and decay of single KO-mesons within the local realistic
approach. Following the foregoing ideas, one introduces the four basic states
of local realism :

K 1 ==Ks:

K2 == r;
K3 == K L:

K4 == KL :

state with S = + I and CP = + I (short-li ving kaon )

state with S = -I and CP = +I (short-living antikaon)

state with S = +I and CP = -I (long-living kaon)

state with S = -I and CP = -I (long-living antikaon)

(24)

Next the probabilities of their descriptions holding in a given physical situation
are introduced:

p;(t) = probability of K; at proper time t U= 1,2,3,4) (25)

The initial conditions depend on the problem considered. If one assumes, as an
example, that initially only states with S = +I are produced with equiprobable
CP = ± I components, one obtains the situation described in quantum theory by
the S = + I ket (17). Therefore,

PI (0) = P3(0) = ! ' P2(0) = piO) = 0 (26)

To agree with the experimentally well-established validity of the quantum
mechanical probabilities (which refer to well defined initial S without specifying
CP), one must find local realistic models reproducing the following equalities for
the chosen state :

PI(t) +P2(t) = I(Ks(O)IK(t)} 1
2 = !Es

P3(t) +P4(t) = 1(KL(O) IK(t)} 1
2 = !EL

(27)
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(28)
PI(t) +P3(t)= I(K(O)IK(t») 1

2 =! [EL+ ES +2JELEs cos 11m t]

P2(t)+P4(t) = I(K(0)IK(t»)12 =HEL+Es - 2JELEs cos 11m t]

Notice that (27) and (28) are compatible with (26). The sum of Eqs. (27) is equal
to the sum of Eqs. (28). Hence, there are only three independent conditions for
the four probabilities (25).

4.2.3. The Probabilities of Local Realism

It is easy to verify that (27) and (28) can be reproduced by writing'I'"

PI = !EsQ+, P2 = !EsQ_, P3 = !ELQ+, P4 = !ELQ_ (29)

where

(30)

These results can be rewritten in a physically more appealing way as

(31)

from which it is clear that all probabilities are positive, as they should be. In (31)
the following "wave functions" were introduced:

\jIs = %exp(-yst j2)exp(-imst) (32)

Notice that the simple equations (31) do not exist within standard quantum
theory. They suggest a dualistic picture according to which all kaons are particles
embedded in extended waves, which are in all cases superpositions of \jILand \jIs,
and evolve according to (32) with the same (unknown) initial value %.0 I) The
probabilities (31) find a complete physical interpretation within this model. For
example, PI(t) can be understood as follows: the factor! is the probability that the
given kaon is born with CP = +I, in agreement with (26); the exponential factor
is the probability that it remains undecayed at time t; and the final fraction is the
probability that it has positive strangeness at time t. In this way the quantum
mechanical probabilities (27) and (28) are also given a completely new physical
interpretation within the local realistic approach . The quantum ensembles are
interpreted to be mixtures of other ensembles in which the basic states of local
realism (24) apply. It should be stressed that Eqs. (31) do not give the most
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general probabilities within local realism. A complete generalization will be given
later.

The probabilities (29) describe a particular mixture, that is, a statistical
ensemble in which two of the basic states (24) are initially present with equal
statistical weights, as shown by the initial conditions (26). The physical
reinterpretation given in the previous section allows us, however, to extend
very naturally our results to the case of "pure states" (only one kaonic state
produced initially), which are needed in the EPR problem. Probabilities with two
indices will be used, the second one specifying which of the four states (24) was
initially present. Naturally there are four possibilities.

In a given situation the basic probabilities for the four states (24) at proper
time t can be considered conditional on the initial presence ofK( (0), K2(0), K3(0),
or K4(0). Using the symbol Pji(tIO) to denote the probability of a kaon in state K.i
at proper time t conditional on the same kaon having been in state K; at proper
time 0 (j, i = 1,2,3,4) and remembering that in eight cases the probability is
zero owing to CP conservation, one can write the remaining eight probabilities:

PII (tIO) =Es(t)Q+(t),

P12(t10) =Es(t)Q_(t),

P33(tI0) = EL(t)Q+(t),

P34(tI0) =EL(t)Q_(t),

P21 (t10) = Es(t)Q_(t)

P22(tIO) =Es(t)Q+(t)

P43(tI0) =EL(t)Q_(t)

P44(tI0) = EL(t)Q+(t)

(33)

which satisfy obvious initial conditions, for example,

PII(OIO) = I , P21(010) = 0

(34)

The Pj;(tIO) appearing in (33) have a physical interpretation similar to that given
for PI(t) at the end of the previous section, only relating to different initial
conditions. In the case of PlI (t10) the given kaon is born with CP = S = +1,
ES(t) is the probability that it has not yet decayed at time t, and Q+(t) is the
probability of strangeness remaining positive at time t. The interpretation of all
pitlO) (j, i = 1,2,3,4) in (33) and in the equations to follow is always similar.

The probabilities introduced through (33) will be said to constitute "the
standard set." Of course these probabilities are to some extent arbitrary, but a
complete generalization will be given later.

4.2.4. The Most General Set of Probabilities

In the next sections the shorter notation Pj; instead ofpitlO) will be used for
conditional probabilities. One can check that all quantum-mechanical probabil
ities for single kaons are reproduced. For example, CP conservation is satisfied,

I(KL(0)IKs(t)}1
2 = 0 =![P31 +P41 +P32 +pd

I(Ks(O)IKL(t)} 1
2 = 0 =! [P13 +P23 +PI4+P24]
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FIGURE 4.10. (Above) Probabilities of local realism for kaons with CP = +I : PII and P22 (upper
curve);Pl2 andp21 (lower curve). (Below) Probabilities of local realism for kaons with CP = -I : P33

and P44 (upper curve); P34 and P43 (lower curve). Proper time in abscissa (units ysl).

because all terms on the right sides of (34) vanish. It is easy to verify that all 14
conditions deducible from the state vectors (19)-(20) are satisfied by the
probabilities (33). These make up the "standard probability matrix":

(35)
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where PII (tIO) = Es(t)Q+(t), pdtlO) = Es(t)Q- (t), etc. It was shown in Ref. 11
that the most general probability matrix that satisfies all 16 quantum-mechanical
conditions that can be extracted from the state vectors (18-20) is

M= (36)

It is p that makes this the most general formulation of local realism. Every
column in (36) refers to a well-defined initial state, one of the four states (24). The
sum of the elements of a column equals Es [for KI(O) and K2(0)] and EL [for
K3(0) and K4(O)]. This accounts for population reduction due to spontaneous
disintegration. Restrictions on p can be obtained by assuming every probability to
be positive and less than I. One gets

(37)

where the inequalities with Es(EL) were obtained from the first and second (third
and fourth) columns of M. Conditions (37) must both be satisfied in any
consistent local realist ic theory. It was checked numerically that at all times
one has Es(t)Q_(t) :s EL(t)Q+(t). In other words, of the upper limits in (37) it is
enough to consider

(38)

The other one is automatically satisfied. No simplification of this type exists for
the lower limits of Eq. (37). In this case it was checked numerically that the
equat ion

Es(t)Q+(t) = EL(t)Q_(t)

is satisfied only for t = to = 1.43Iy;-l. Below (above) to, -EL(t)Q_(t) is larger
(smaller) than -Es(t)Q+(t). Therefore,

(t) > min(t) = {-EL(t)Q_(t) ~f t < 1.431y;-1 (39)
p - P -Es(t)Q+(t) If t > 1.431y;;-1

Equations (38) and (39) are necessary conditions that all local realistic theories of
single-kaon physics have to satisfy. Notice that Q+(t) and Q_(t) as defined in (30)
are always positive, Q_(O)= 0 excepted. Therefore the upper bound (38) [lower
bound (39)] is never negative (never positive).

By remaining in the frame of single-kaon physics it is not possible to say
more. It can be shown, however, that the comparison of local realism with the
nonparadoxical predictions of quantum theory for correlated kaon pairs leads
necessarily to p(t) = 0, so the local realistic theory of single kaons becomes
unique. All this will be seen in Section 4.4.
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4.3. THE DEBATE ON THE EPR PARADOX FOR PAIRS OF PARTICLES

About a dozen proposals for the experimental study of the EPR paradox in
particle physics are critically reviewed. Some of them seem to open new
interesting possibilities, especially with new accelerators currently under
construction (<l> factories, B factories).

4.3.1. Forbidden Symmetrical Observations

As shown in Section 4.2.1, pairs of neutral kaons can be generated in the
decay of <l> mesons, (e.g., produced at rest in the laboratory in e+-e: collisions):

e+ + e" --+ <l> --+ KO + j(0

The two final neutral kaons are described quantum mechanically by the
JPc = 1-- state vector (22) for arbitrary proper times of the two kaons.

The probability ofa double j(0 observation at times ta and tb is given by (23)
and can be written

- - I
PQM[K(ta); K(tb)] = 8[ES(ta)EL(tb)+ EL(ta)ES(tb)

-2JES(ta)EL(tb)EL(ta)ES(tb) cos I1m(ta - tb)] (40)

where

(41)

and 11m = mL - ms is the KL - Ks mass difference.
As discussed in Chapter 1, Lipkint l2

) showed that there is an important
consequence of the state vector (22): the observation of a particular decay mode,
e.g., 1t+1C, for one kaon implies that the other kaon cannot decay, at the same
proper time, in this mode. The simultaneous decay of both kaons into two neutral
pions is similarly forbidden, as are all equal decays. Table 4.6 lists the pairs of
decays forbidden at equal proper times. One can show that the previous selection
rule applies even if CP violation is taken into account, because CP violation

TABLE 4.6. Pairs of DecaysForbidden at Equal
Proper Times

(~)o -> n+ + n
(~)o -> nO + nO

(~)o -> n+ +n- + nO

(~)o -> n+ + e- + ve
(~)o -> n- + e+ + ve
(~)o -> n+ + /1- + vp

(~)o -> n- + /1++ vp

(KO)b -> n+ + n
(Ko)b -> nO + nO

(KO)b -> n+ + n- + nO

(Ko)b -> n+ +e: +ve

(KO)b -> n- + e+ + ve

(~)b -> n+ + /1- + vp

(Ko)b -> n- + /1++ vp
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modifies (22) only in the multiplying factor, while the term in braces remains the
same.

The essential physical point of these phenomena can be summarized as
follows: The observation of a particular decay mode at time t in the positive (a)
direction imposes constraints on the kaon beam observed in coincidence in the
negative (b) direction. These constraints force IK} b to be a definite linear
combination of IKs} and IKL } . It is the very linear combination that at the
same t cannot decay in that mode .

In a paper published in the DAlj>NE Physics Handbook, Baldini-Celio and
collaborators'P! pointed out another aspect of the EPR paradox for neutral kaons :
Even a state vector with sharp CP anticorrelation like (22) could, in principle,
give rise to two Ks mesons if a thin regenerator, which converts KL into Ks, is
introduced on one side of the experiment. Coherent regeneration cannot arise,
however, for a spherical regenerator because the state vector (22) is invariant
under that simultaneous transformation of the state vectors of the two kaons that
represents coherent regeneration. The doughnut of the storage ring is considered
by these authors to be an appropriate regenerator for the verification of this
prediction.

4.3.2. Some Applications of Furry's Hypothesis

The "Furry hypothesis" consists of the spontaneous evolution of the state
vector (21) into its components, e.g., as follows:

I"'} ::} IKS}aIKL}b

I"') ::} IKL)aIKs)b

in half of the cases

in the other half
(42)

Six(J4) viewed this as a possible evolution for correlated kaon pairs (taking place
immediately after the decay of the lj> meson). In 1991 Piccioni'P! also considered
the Furry hypothesis for the same process. He pointed out that the available
experimental evidence already showed that only KsKL pairs were produced, no
KsKs or KLKL pairs. To be consistent with this evidence, the Furry hypothesis
had to be assumed to lead from the state vector (21) to the mixture (42) and not to
a mixture of IKoxo} and IXoKO}, which would also be possible in principle.

The main virtue of the mixture (42) is that it avoids the Einstein-Podolsky
Rosen paradox (it is compatible with local realism) . A serious drawback is that it
contradicts quantum theory even for the (nonparadoxical) Lipkin anticorrelations
in strangeness. The predicted probability PF for two XO observations differs from
the quantum-mechanical probability by the absence of the interference term in
(40):

(43)
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One easy way to rule out the Furry hypothesis is simply to measure the
strangeness of the two kaons: sharp anticorrelations are predicted by (40), but
should be totally absent if the Furry hypothesis (43) holds.

The problem of quantum nonseparability versus local realism for lfYlio pairs
was discussed by Datta and Home,(16) who considered the experimental evidence
concerning the decay of the spin-l Y(4s) meson into a pair of pseudoscalar
mesons HOBo . The quantum formalism used for this HOBO system is very similar
to the one used for K°l(o pairs, with the difference that the states of the HO meson
analogous to Ks and KL have the same decay width. Datta and Home deduced
some consequences of the Furry hypothesis and showed that an empirically
measurable quantity R should take the value RF =1, while the corresponding
quantum-mechanical prediction was RQM « 1. Preliminary experimental
evidence was in favor of the latter prediction.

Stronger evidence against the validity in nature of Furry's hypothesis was
recently found at the empirical level by Muller(17) and collaborators in Sac1ay. In
this experiment K°l(° pairs were produced by antiprotons annihilating in a
gaseous hydrogen target. The p +p annihilations at rest are known to take place
mainly in the 3s' state or in the 3rfJ state. Inthe former case the K°l(° channel has
the quantum numbers J Pc = 1-- and the two kaons are represented by the wave
function (21), while in the second case the quantum numbers are JPc = 0++ and
the wave function at time of decay is

Clearly the last state leads only to KsKs and KLKL pairs, at least in the
approximation of CP conservation , and can be distinguished experimentally
from the state leading to KsKL pairs represented by (22). The experimental ratio
of the corresponding rates depends on the hydrogen pressure, and in a typical
measurement carried out at the Low-Energy Antiproton Ring (LEAR) at CERN
was found to be

so the contamination of the "unwanted" J Pc = 0++ channel is fairly small. This
means that the prediction (40) for the double-time probability of observing the
K°l(o pair should be reasonably accurate. The same can be said for

PQM[K(ta); K(lb)] = i [ES(ta)EL(lb) +EL(ta)ES(lb)

+2.jEs(ta)EL(lb)EL(ta)Es(lb) cos f1m(ta - lb)] (45)
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which is also a consequence of the state vector (22). The quantum-mechanical
probabilities (40) and (45) are proportional to the corresponding intensities :

where k is a constant. Muller's experiment measured the asymmetry

[ ]
I[K(ta); K(tb)] - I[K(ta); K(tb)]

CJ. ta' tb = -=---='--:=-.::...-"..---'==-'-"--=='-=-...:.
I[K(ta); K(tb)] + I[K(fa); K(tb)]

which, from (40) and (45), is predicted to be

[ ]
2JEs(ta)EL(tb)EL(ta)Es(tb) cos L1m(ta - tb)

CJ. ta , tb = ----'-----'----.,----.,------'--=-.,--------'---'--
Es(ta)EL(tb) + EL(ta)Es(tb)

According to the Furry hypothesis the interference terms should be absent from
(22) and (45), and the asymmetry should accordingly vanish. The kaon strange
ness was measured via scattering in a copper target where only the negative
strangeness state can lead to hyperon production. The result CJ. =0.84 ± 0.17,
averaged over some time interval, was clearly different from zero and thus ruled
out Furry's hypothesis.

What is particularly interesting in the experiment is that its natural devel
opment in the near future could, in principle, provide important information
concerning the comparison between local realism and quantum mechanics, even
before the <I> factory accelerator starts to operate.

4.3.3. Other Proposed Forms of the Paradox

In 1986 Tornqvist' 18) considered the reaction

e+ + e- ~ J /\jI ~ A + X (46)

followed by the decays A ~ 1C + p and X~ 1t+ +p, and hoped to produce a
violation of Bell's inequality. He calculated the quantum-mechanical rate of the
overall reaction, finding

R(a, I) ex: 2[1 - ;: sin2 e](I - CJ.2anbn) +;: sin2 e[l - CJ.2(a· I) - 2axbx)]

where e is the ems scattering angle; k and E are the A momentum and energy,
respectively; CJ. = -0.642± 0.013 is the A decay asymmetry parameter resulting
from parity violation; a(I) is a unit vector along then" (1t-) momentum in the
X(A) rest frame; the x-axis is taken perpendicular to the e+e: ~ AX scattering
plane; and f is the direction of polarization of the J/\jI. Tornqvist's hope to use
these predictions to test Bell's inequality appears groundless, however, because (i)
no dichotomic observable is directly measured, the pions' momenta being
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continuously variable; and (ii) momentum measurements concern compatible
observables, and Landau's theorem of Section 3.2.3 shows that no violation of
Bell's inequality is possible anyway. These criticisms apply also to most of the
other proposals discussed in this section.

In 1992 Privitera' (9) considered an EPR test of quantum mechanics based on
the reaction e+e- ---+ .+ ,c and on the subsequent decays .+ ---+ 1t+ +vt and
.- ---+ 1t- + v.. He was well aware that a good agreement of these reactions with
quantum mechanics could not exclude local hidden-variable theories in general,
butonly, perhaps, certain classes of them . The same reaction was considered by
Abel , Dittmar, and Dreiner.V'"By studying this process, they concluded that their
theoretical expressions agreed with Bell's inequality. However, their result was
based on an improper use of Bell's theorem, as stressed by Datta. (21) In fact the
three authors calculated the probability density

where e"" is the angle between the momenta of the outgoing pions of reaction
(46) (after decay of A and "A). They inserted this density into Bell's inequality
even though P(cos e",,) does not refer to dichotomic observables.

In 1993 Srivastava and Widom(22) published the incredible proposal that the
probability of an earlier decay of a neutral kaon depends on where and when the
other EPR-correlated kaon hits, at a later time, an absorber. This they claimed to
be a prediction of quantum theory. Actually Ancochea and Bramon'F" showed
that Srivastava and Widom had introduced a wrong sign in the CP-violating wave
function . With the correct sign quantum theory was shown to imply no action of
the future on the past.

In 1995 Di Domenico'<" published a detailed proposal for the study of the
EPR paradox with a <I> factory, based on a kaon "quasispin" formalism taking
account of CP violation. He introduced three dichotomic (=t . ..j,) variables A, B,
C, treated them from the point of view of local realism according to Wigner's
approach (Section l.lO), and introduced eight basic probabilities, such as

This is the probability that the hidden variable assumes a value lying in the
domain indicated within brackets; when this happens a measurement of the
quasi spin A(t.), B(l2), or C(l3) on the kaon on the left will yield a result indicated
by an arrow to the left of the semicolon; a measurement on the kaon on the right
will yield a result indicated to the right of the semicolon. After this correct start,
"in order to simplify the notation," the author considered in Wequal times for the
three observables and propagated the probability in time by taking account only
of decay factors . There is clearly a loss ofgenerality in this approach, because the
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probabilities of the previous type are expected to vary with strangeness oscilla
tions too. The time dependence of probabilities for correlated kaon pairs will be
discussed in Section 4.4. For this reason the validity ofDi Domenico 's claim that
in the case of kaon pairs CP violation leads to a violation of his form of Bell's
inequality seems doubtfu l.

Another interesting proposal for the study of the EPR paradox with neutral
kaon pairs has been made by Eberhard,(25) who considered an asymmetric <I>

factory in which a 2.13-GeV electron beam collides with a 122-MeV positron
beam. These energies are chosen so as to correspond to a total energy in the
center of mass equal to the mass of the <I> meson, 1020 MeV. Neutral kaon pairs
are produced in <I> decays and move in the laboratory with velocities forming
acute angles with the electron beam (Fig. 4.11). The test suggested is based on an
interference effect between Ks -+ KL regeneration processes involving two
kaons, centimeters apart. Such interference seems to exhibit nonlocal features,
and Eberhard shows that it leads to violations of Bell-type inequalities. Additional
assumptions are, however, needed to deduce these inequalities, and this seems to
weaken the whole argument, even though the author shows that his extra
assumptions are rather reasonable. Anyway, no project to build asymmetric <I>

factories is known at present.

4.3.4. Direct Applications of Local Realism

The main difficulties in examining the EPR paradox experimentally with
kaon pairs in usual accelerator physics are

FIGURE 4.11. Neutral kaon trajectories from 4> meson decay at an asymmetrical 4> factory (after
Eberhard(25l). The two detectors are supposed to reveal long kaons only. This constructive interference
test must be carried out with regenerators set on (I) up kaon path; (2) down kaon path; (3) both paths;
(4) no path.
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(i) The cross sections for producing <jl mesons are normally rather small.
(ii) Considerable background noise usually hides the signal composed of

the two neutral kaons arising from <jl decay.

Cocolicchio'<" proposed that a <jl factory be used to overcome these
difficulties. He pointed out that a machine luminosity of 1032 cm? S-I , as
expected for the DA<jlNE accelerator, could easily allow one to detect the 12%
discrepancy predicted in 1983 by Selleri.(9) The latter paper contained the first
systematic application of local realism to kaon pairs. Elements of reality
connected with strangeness and CP were shown to be necessarily present in
each kaon. These elements of reality are the basic ingredients of any theory
developed according to local realism. The quantum-mechanical prediction (40)
was shown to disagree with the consequences of local realism by as much as
12%, but the simple model theory developed involved extra assumptions that
undermined its generality. The four assumptions made in Ref. 9 (listed in order of
decreasing reliability) were the following:

AI. Space isotropy: All probabilities have left-right symmetry: for all
practical purposes a Ks traveling to the left and a KL traveling to the
right are physically equivalent to a Ks traveling to the right and a KL

traveling to the left.
A2. Random decays: Kaon decays are individual random processes at

constant rates, and kaonic populations reduce exponentially.
A3. KO-Ko symmetry: All probabilities have particle-antiparticle symmetry.

In the physical situation described by the quantum-mechanical vector
(21) one has

Similar relations are assumed to hold for the local realistic probabilities.
A4. Opposite transition rates: It was assumed that the rate of every

transition equals that of the opposite transition. Consider, for example,
the transitions

(47)

where the first (second) kaon written is the one traveling to the left
(right). Clearly, the two transitions (47) describe jumps in strangeness
that are simultaneous in the proper times and take place for ta = tb = t.
The second transition is opposite to the first.

Notice the different nature of these assumptions: space isotropy (AI) is a very
natural statement supported by a large body of experimental evidence, but
randomness of decays (A2), KO-Ko symmetry (A3), and equality of the opposite



4.3. THEDEBATE ON THEEPR PARADOX FOR PAIRS OF PARTICLES 181

transition rates (A4) are simplifying assumptions that allowed that early paper to
reach a conclusion.

A discussion of the theoretical studies of the EPR paradox for K°l(° pairs
was made by Ghirardi , Grassi, and Weber (GGW).(27) The ir general conclusion
was

the <\>-factory facility does not seem to open new ways of testing quantum mechan ics
versus alternative general schemes of the type which are usually regarded as worth
considering in the debate about locality and quantum mechanics.

However, the rest of the story shows that just the opposite is true, because
the years following 1992 have produced new results that are decisive for a
possible solution of the EPR paradox. It has been shown'!'! that a <j>-factory
facility is the ideal tool for performing very meaningful experiments, which can
decide between local realism and quantum mechanics.

It is nevertheless of some interest to review the arguments put forward by
GGW The authors started by observing that Bell's inequality written in terms of
four different times of flight is not violated by the quantum-mechanical two-time
joint probability for correlated pairs of kaons. This conclusion is correct and has
also been reached by Cobianco.v''" who pointed out that, a priori, a violation is
expected for large time differences, just as in the EPR experiments with atomic
photon pairs it is obtained for relatively large angles between the polarizers' axes.
But the decay factors in the kaonic wave functions decrease exponentially, and
large times make it impossible to overcome Bell's limit. When the degree of
violation is plotted as a function of the artificially varied kaon lifetime (e.g., by
keeping the short/long lifetime ratio constant), one sees that for real kaons no
violation exists, but that a discrepancy appears when the kaon lifetime becomes
about twice as long as it really is, or more. For stable kaons one obtains the
standard 41% violation.

Of course, the correctness of the GGW conclusion concerning Bell 's
inequality does not mean that local realism and quantum mechanics are
compatible for real kaons. In fact, Bell's inequality is only one of the many
consequences of local realism, as shown in Section 3.4 .5. GGW were aware of
this situation, for they not only examined Bell's inequality but considered
proposals formulated in different terms. To Six,(14) for instance, they objected
that Furry's spontaneous factorization hypothesis is not believable as a dynamical
mechanism for the evolution of quantum systems because it would lead to
violations of well-known conservation laws. Concerning Sellen's paper,'"! GGW
argued against the generality of the local realistic approach because of assump
tion A4 postulating the equality ofthe instantaneous rates ofthe two processes (47) .
To this GGW objected that it is too restrictive, because local realistic models could be
conceived in which the two rates are different. They were right about this .

The pessimistic conclusion reached by GGW concerning the usefulness of a
<j> factory for the study of the EPR paradox is probably due to their manifest
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conviction that the Orsay "clear-cut" experiments'F" have really shown that
nature is nonlocal, at least regarding photon correlation experiments. Actually the
logical situation is not so simple: as seen in the third chapter, the photon
correlation experiments have violated only inequalities deduced with arbitrary
and untestable additional assumptions that make them much stronger than Bell's
original inequality. It has been impossible to test the validity of Bell's original
("weak") inequality because of the low efficiency of photon detectors. Highly
efficient detectors exist instead in elementary particle physics: For this reason the
kaon-pair option seems to be the best choice for a really penetrating discrimina
tion between local realism and current quantum theory.

The seeds for overcoming the GGW objection had actually been sown one
year before (1991) by Home and Selleri (HS)YO) These authors discussed only
single-kaon physics (and not the EPR problem) and showed that at least one local
realistic model existed that exactly reproduced the quantum-mechan ical oscilla
tions in strangeness. In this model kaons undergo sudden jumps of strangeness;
quantum probabilities are reproduced by summing over several different indivi
dual behaviors. The very existence of this model eliminated the "mystery"
surrounding the quantum-mechanical properties of kaons. Moreover, HS showed
that the local realistic rates for the transitions KO -+ l(0 and l(0 -+ KO are
necessarily different (Fig. 4.12). So the rates for transitions (46) are not expected
to be equal either. It was not the task of HS to find the most general local realistic

1
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2 4 6 8 10 12 14

FIGURE 4.12 . The results found by Home and Selleri'"?' for the transition rates KO .... to and
to .... ~, assumed to be the same for CP = ± I. The rates are divided by lim . Proper time in abscissa,
in units 1.5"1 . The rate for~ .... to is the upper curve at small times.
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model for single-kaon oscillations, but only to show that nothing in these
oscillations contradicted local realism.

In 1992 Privitera and Selleri (PSi30
) developed the ideas introduced in Ref.

9, using a more general theoretical approach that allowed them to do without the
extra assumptions A4 and A2. No effort was made, however, to avoid A3.
Neglecting CP violation, PS started from the local realistic description of kaon
pairs [described quantum mechanically by the state vector (21)] according to
which the two particles necessarily undergo simultaneous strangeness jumps .
These take place at random times in a statistical ensemble of pairs, but every
jump must be predetermined for the two kaons at the time of <I> decay to account
for the simultaneity within the local realistic approach. PS developed a
rate-equation method for calculating the probabilities of the eight possible
local realistic states of kaon pairs. The method was so general that even the
"safe" extra assumption A2 was not used. The final result was the local
realistic expression of the joint probability for double XO observations at
different proper times in terms of TI(t) and T2(t). These were defined as
follows:

Tj(t)dt = probability of a transition away from the local realistic

state Aj(t, t) in the time interval (t, t + dt), i = 1,2

where

AI (ta' tb) = local realistic state for K I (ta)K4(tb)
A2(ta' tb) = local realistic state for K2(ta)K3(tb)

where the notation (24) was used for the local realistic states: In the case of
A 1(ta' tb), for example, the first kaon is objectively "short" (CP = +1) and
"particle" (strangeness = +1), while the second kaon is objectively "long"
(CP = -I) and "antiparticle" (strangeness = -I).

The final part of the PS paper used the results for the transition rates TJ(t)
and T2(t) found by HS for single kaons. This approach presented an advantage
and a shortcoming. The advantage was that the difference between the opposite
rates was recognized, thus overcoming the dubious extra assumption A4, and
hence the GGW objection. The HS model for single kaons was, however, not
general enough. Extended to the theory of correlated kaon pairs this became a
shortcoming and could lead only to results of limited generality. But the lIS
model was natural and elegant, and the discrepancy with quantum mechanics
found by PS was large (up to about 25%). This result indicated that such a
discrepancy was likely to remain even if the most general theory for single kaons
was used. The further developments of this line of thought will be presented in
the next section.
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4.4. GENERAL LOCAL REALISTIC PREDICTIONS

A general local realistic theory of correlated neutral kaon pairs will now be
reviewed. If kaon pairs are produced in <j> meson decays, the local realistic
probab ility of observing KOKopairs at certa in different proper times differs by
25-30% from the quantum-mechanical prediction, despite the fact that Bell-type
inequalities are necessarily satisfied. The size of this difference justifies the
systematic neglect of CP violation. A <j>-factory accelerator seems to be the right
place for a resolution of the EPR paradox , but other ways of producing <j> mesons
are not excluded.

4.4.1. The Case of Neutral Kaon Pairs

Kaon pairs arising from the decay of the <j> meson, e.g. produced in e+e:
collisions, are described quantum mechanically by the J Pc = 1- - state vector
(22). It will now be shown that the local realistic approach leads to disagreement
with the probability (40) ofa double KO observation at proper times ta and tb. The
starting point is again the discussion of Section 4.2, where it was shown that local
realism applied to the physical situation described by (22) implies , at equal proper
times, a total anticorrelation both in strangeness and in CP between the two kaons
flying in opposite direction s, the four possible physical configurations appearing
initially with the same statistical weight et).Given (24), one must consider the
following four cases for the calculation of p LR[:K(ta); K(tb)]'

A. Initial state with a K)(O) on the left and a K4(0) on the right. The probability
that the initial K1(0) on the left evolves into an S = -I state at proper time ta
[then, given CP conservation, into K2(ta)] is given by (36):

(48)

Correlated with the leftward-moving antikaon K2(ta), on the right side of the
physical process there will be at time tb = ta either decay products or a pure K3

state. The probability of the latter is EL(tb). The probability of its evolution into
K4(tb ) , conditional on the state K3(tb ) [with tb > tb ], is

(49)

Therefore, in this first case the overall probability of a double S = -1 observation
at proper times ta (on the left) and tb (on the right) is clearly

PI [K2(ta); K4(tb)] =P21 (taI0)EL(tb)P43(tb!tb)

=(ES(ta)Q-(ta) - p(ta)}EL(tb)pdtbltb) (50 )

B. Initial state with a K2(0) on the left and a K3(0) on the right. The probability
that the initial K2(0) on the left remains an S = -1 state at proper time ta [then,
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given CP conservation, that it becomes K2(ta)) is given by (36):
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(5 I)

Correlated with the leftward-moving antikaon K2(ta), on the right side of the
phys ical process there will be at proper time tb = ta either decay products or a
pure K4 state. The probability of the latter is EL(lb). The probability of its
evolut ion into K4(tb ) is again given by Eq. (49). Therefore in this second case the
overall probability of double S = -I observation at prope r times tb = ta (on the
left) and tb (on the right) [with tb > tb] is

P2[K2(ta);K4(tb)] = P22(taIO)EL(lb)pdtbItb)

= {Es(ta)Q+(ta)+ p(ta)}EL(lb)P43(tbltb) (52)

Notice that the term p(ta) is going to disappear when (50) and (52) are added .

C. Initial state with a K3(0) on the left and a K2(0) on the right. The probability
that the initial K 3(0) on the left evolves into an S = -I state at proper time ta
[then, given CP conservation, into K4(ta)] is given by (36):

(53)

Correlated with the leftward-moving antikaon K4(ta), on the right side of the
physical process there will be at time tb = ta either decay products or a pure K(
state . The probability of the latter is Es(lb). The probability of its evolution into
K2(tb), conditional on its having been a K1(tb) [with tb > tb] is

(54)

Therefore, in this third case the overall probability of double S = -I observation
at proper times ta (on the left) and tb (on the right) is

P3[K4(ta);K2(tb)] =P43(taI0)Es(tb)P21 (tbltb)

={EL(ta)Q-(ta) + P(ta)}ES(tb)P21 (tbltb) (55)

D. Initial state with a K4(0) on the left and a K 1(0) on the right. The probability
that the initial K4(0) on the left evolves into an S = -I state at proper time ta
[then, given CP conservation, into K4(ta)] is given by (36):

(56)

Correlated with the leftward-moving antikaon K4(ta), on the right side of the
physical process there will be at time tb = ta either decay products or a pure K1

state . The probability of the latter is ES(tb ) . The probability of its evolution into
K2(tb) is given by (54) . Therefore, in this fourth case the overall probability of
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double S = -1 observation at proper times ta (on the left) and tb = ta (on the
right) tb = ta is

P4[K4(ta);K2(tb)] = P44(taI0)Es(tb)P21 (tbltb)

= {EL(ta)Q+(ta) - p(ta)}ES(tb)P2I (tbltb) (57)

Notice that the p(ta) term is once more going to disappear when (55) and (57) are
added .

The four elementary states of local realism must appear initially with the
same weight 1) in the physical situation described quantum mechanically by the
state vector (22), as shown in Ref. 11. Therefore, given the results obtained
above, one has

PLR[K(ta);K(tb)] =t {PI [K2(ta);K4(tb)]+ P2[K2(ta);K4(tb)]+ P3[K4(ta);K2(tb)]

+ P4[Kita ) ; K2(tb )]}

Es(ta)EL(tb) (-) EL(ta)ES(tb) (1- )
= 4 P43 tbltb + 4 P21 tb tb

Remembering that tb = ta the last equation can be written

where ta is now used as a time label for the rightward-moving kaon as well. The
probabilities P43 and P21 in (58) are not known in general: the previous
considerations would fix them [up to the additive terms ±p(tb)] only if one
had ta = O. The presence of the conditional probabilities in (58) shows that the
result is valid for tb > ta only. All the considerations of the present section could,
however, be repeated with the role of the two kaons exchanged. Therefore one
can conclude that

(59)

An analogous symmetry in ta> tb clearly holds for the quantum-mechanical
probability given by Eq. (40).

4.4.2. Two Time Probabilities

The probabi1itiesp21(tblta) andp43(tblta) in Eq. (58) remain to be calculated .
The first is the probability that a right-moving kaon, which was with certainty a
K I at time tb = ta' becomes a K2 at time tb. The meaning of the second is similar.
The time evolution mixes opposite strangeness states without changing CP
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(which is assumed to be conserved). In the case of CP = +1 the interesting
probabilities are

PII(tlto) == p[KI (t)IKI (to)],

which must satisfy

PII(tolto) = 1,

(60)

These probabilities are not deducible from the results of Section 4.2.4, which
refer only to initial time zero, but are calculable by means of rate equations. If one
defines T1(t) to be the transition rate at proper time t from K1to K2, and T2(t) the
opposite transition rate from K2 to K.; and T3(t) the transition rate at proper time t
from K3 to K4 , and T4(t) the opposite transition rate from K4 to K3;

A(t) == TI(t) + T2(t), B(t) == T2(t) - T.(t) (61)

A(t) == T3(t)+ T4(t), B(t) == T4(t) - T3(t) (62)

E(t, to) == expl-Ldt' A(t')I (63)

£(/, /0) ~ expl- f. dt' 04(1')I (64)

then the probabilities P21 (tblta) and P43(tblta) can be obtained by solving the rate
equations and tum out to be

P2.(tbl ta) = ES1(ta)[P21(t
bI0) - P21(taI0)ES(tb - ta)E(tb, ta)] (65)

-. -pdtblta) = EL (ta)[PdtbIO) - pdtaIO)ES(tb - ta)E(tb, ta)] (66)

It is now easy to reconstruct the interesting probability (58) and obtain

- - EL(ta)
PLR[K(ta); K(tb)] =-4- [P21 (tbI O) - P21 (taIO)ES(tb - ta)E(tb , ta)]

ES(ta) -+ -4-[PdtbI0) - pdtaIO)EL(tb - ta)E(tb, ta)] (67)

This result is of fundamental importance because it allows one to use the single
kaon theory of Section 4.2, which described kaonic evolution starting from
proper time zero. Notice that for tb = ta one has

Es(O) = EL(O) = E(ta' ta) = E(ta' ta) = 1

From Eq. (67) it then follows that

PLR[K(ta); K(ta)] = 0

The meaning of the last equation is clear: the class of local realistic theories
considered satisfies the strangeness anticorrelation at equal proper times that also
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hold in quantum mechanics. For this reason it would not be correct to compare
Eq. (67) with the "Furry" expression (43), which is in agreement with local
realism but does not vanish for tb = tao

4.4.3. Unicity of the Local Realistic Model for Single Kaons

When single-kaon physics is considered, as in Section 4.2, an unknown
quantity pet) appears in all transition probabilities: see Eq. (36). By considering
only single kaons little can be said about pet); only upper and lower limits can be
obtained for p(t), as in Eqs. (38) and (39). An interesting result has recently been
obtained by Privitera,(31) who showed that the application of single-kaon theory to
correlated kaon pairs leads necessarily to the condition

pet) = 0 (68)

so that the acceptable local realistic theory of single neutral kaons becomes
unique! The proof of (68) follows.

Consider again case A of Section 4.4.1 of an initial state with a K.(O) on the
left and a K4(0) on the right. The probability that the initial K4(0) on the right
evolves into a S = +I state at proper time tb = ta [which is the necessary
condition for having an S = -I K2(ta) on the left] is given by (36):

P34(tbI0) =EL(tb)Q_(tb)+ P(tb)

Correlated with the rightward-moving kaon K 3(ib ) , on theleft side of the physical
process there will be at time tb = ta either decay products or a pure K2 state. The
probability of the latter is ES(ta)' The probability of the further evolution of the
Kitb) into K4(tb) [with tb > tb] is

pdtbltb) == p[K4(tb)IK3(tb )]

Therefore , in case A the overall probability of a double S = -I observation at
proper times ta (on the left) and tb (on the right) can also be written

P.[K2(ta); K4(tb)] =P34(tbI0)Es(ta)P43(tbltb)

Comparing this result with Eq. (50) one gets

P21 (taI0)EL(tb)P43(tbltb) =P34(tb I0)Es(ta)P43(tbltb)

whence, eliminating the common factor and using Eq. (36) one more,

[ES(ta)Q-(ta) - p(ta)]EL(tb) = [EL(tb)Q-(tb) + p(ib)]Es(ta)

Now it is enough to recall that tb = ta to see that the terms containing Q-(ta)
cancel and the condition remains:

p(ta)[EL(ta) +ES(ta)] = 0

Given the arbitrariness of ta, from the last equation the result (68) follows for all t.
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4.4.4. Incompatibility with Quantum Mechanics

Unknown quantities in (67) are E(tb, ta) and E(tb' ta). They can be used to
deduce upper and lower bounds for the left side of (67). Since A(t) and A(t) are
never negative, by definition, one gets, from (63) and (64),

(69)

In calculating the extreme values of (67) the point of view will be adopted that
these functions are independent of one another. If the quantum-mechanical
predictions fall outside the so-calculated set of values, a clear incompatibility
between local realism and quantum mechanics will emerge.

Observing that in (67) E(ta' tb) and E(ta, tb) multiply only negative terms,
one can set them equal to the extreme values 0 and 1 [see Eq. (69)] to obtain the
inequalities

where

and

pmax > p [K(t). K(t )] > pmin
-LR a' b- (70)

(71)

(73)

(72)

min EL(ta) [ () (p =-4- PZl tblO - PZI taIO)ES(tb - ta)]

ES(ta)+ -4-[P43(tbI0) - P43(taI0)EL(tb - ta)]

By using (36) and (68) in (71), one obtains

pmax = EL(ta)ES(tb) : ES(ta)EL(tb) Q-(tb)

Again using (36) and (68), written for tb and ta> one obtains from (72):

pmin = EL(ta)Es(tb): ES(ta)EL(tb)[Q-(tb) - Q-(ta)] (74)

A calculation of the minimum predicted by local realism in Eq. (70) was
performed in Ref. 11 for tb = 2ta• Those numerical results are shown in the
third column of Table 4.7 and compared with PQM[K(ta) ;K(tb)]: the latter
probability violates the quantum-mechanical limit by as much as 30%. Privitera's
result (68) was not available at that time, so p(ta) was also used as a variable
parameter in that calculation. A better limit can now be obtained by using Eq.
(74), which incorporates Eq. (68). The result is shown in the last column ofTable
4.7. The values ofprnin are thus seen to be slightly but systematically higher than
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TABLE 4.7 . Comparison between Predicted Probabilities for Double kO
Observations at Proper Times ta and 2ta

'ts !« PQM[K(ta). K(2ta)] P2'h"[K(ta)' K(2ta)] I I PTh"[K(ta), K(2ta)]

0.2 0.0018 0.0044 0.0052
0.4 0.0051 0.0118 0.0145

0.6 0.0087 0.0171 0.0221
0.8 0.0115 0.0195 0.0258
1.0 0.0133 0.0192 0.0259
1.2 0.0142 0.0174 0.0234
1.4 0.0144 0.0148 0.0198
1.6 0.0139 0.OII9 0.0158
1.8 0.0131 0.0083 0.0121

those found in Ref. II, consistently with the larger number of theories there
considered.

The incompatibility between local realism and quantum mechanics for
tb = 2ta is also shown in Fig. 4.13, where the disagreement of the quantum
theoretical predictions with the minimum probability allowed by local realism is
evidenced by the values below unity of the quantum mechanical curve.
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FIGURE 4.13. Predictions of quantum mechanics and local realism [p"' i", given by Eq. (74)] for the
probability of a double KO detection, for tb = 2ta. Time ta in abscissa (units 'Ys1) . The quantum
mechanical curve is lower than the local realistic minimum for ta < 1.7.
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5 10

FIGURE 4.15. Plane of the proper times ta and tb of the two kaons. The regions of quantum
mechanical violations of the maximum and minimum deduced from local realism for the double kO
detection probability are roughly regions RI and Rz. Violations of the minimum(maximum)are inside
R1 (Rz). Only the part with ta < tb is shown, the theory being symmetrical for ta B tb. Time tb in
abscissa (units Ys I) .
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FIGURE 4.14. Comparison between the predictions of quantum mechanics and local realism
[maximum, given by Eq. (73») for the probability of a double k Odetection (th = 2.5ta). Time fa in
abscissa (units ysl ). For fa > 2.6 the quantum-m echanical curve becomes larger than the local realistic
maximum.

A similar disagreement exists with the maximum local realistic probability:
see Fig. 4.14, relative to the case tb = 2.5ta , where the quantum-theoretical
violations of local realism are evidenced by the values of the quantum mechanical
curve being above those of the maximal local realistic curve .

In the plane of the proper times ta and tb of the two kaons the regions of
quantum-mechanical violations of the maximum and minimum deduced from
local realism for the double /(0 detection probability are the regions R, and R2 in
Fig. 4.15. Only the part with ta < tb is shown in the figure: since the theory is
completely symmetrical for ta *+ tb, one can easily imagine a similar situation in
the region above the line ta = tb of the (ta ' tb) plane .

During the preparation of R. Foadi's Thesis for the master degree at the
University of Turin (1998) it became clear that the treatment of kaon pairs based
on rate equations as given in Ref. II can lead to inconsistencies when applied to a
broader extent. In order to overcome this difficulty one needs to take into careful
account the historical nature of kaons : in a way, they remember their past. When
this is done properly an even larger discrepancy (up to 73%) is found between
local realism and quantum mechanics. This forms the object of a paper in
preparation.( 32)
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Chapter 5

Proposed Solutions of the Paradox

5.1. ACTION AT A DISTANCE

There have been various attempts to explain the long-range interference
effects predicted by quantum theory which appear to have been confirmed by
experiments. Such attempts often involve a subquantal medium or ether that
transmits the influence superluminally.

5.1.1. Wholeness and Holograms

According to Bohm, the essential new feature implied by quantum
theory is nonlocality: a system cannot be broken up into parts whose basic
properties do not depend on the state of the whole system, no matter how far
apart they may be. He believes, with Hiley, that the experiments to test Bell's
inequality clearly reveal the nonlocal nature of quantum phenomena.(I) Indeed
nonlocality

. .. is involved in an essential way in every manifestation of a many-body system, as
treated by Schrodingers equation in a 3N-dimensional configuration space.' !'

It is the quantum potential that gives rise to the nonlocal nature of quantum
phenomena. Bohm(2) has also suggested an ontological model for quantum
nonlocality to make the influences in question more plausible. He has done
this by introducing the new notion of "unbroken wholeness" that characterizes
two correlated quantum systems. He considers the interesting example of a
hologram and stresses that the different parts of the object are not in correspon
dence with different parts of its hologram, but rather each of the latter parts
individually somehow expresses the whole object. Accordingly, by illuminating
any part of the hologram, information can be obtained about the whole object,
even if less detailed and from fewer angles. What can appear to be two separated
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quantum objects may likewise be a manifestation ofan interconnected wholeness.
The hologram of two spheres, for instance, stores the information of each ball
over the entire hologram. It can therefore be said that in the hologram the two
spheres are really in a way amalgamated and inseparable. Bohm views this as an
example of the true physical situation giving rise to the EPR paradox: In space
there is only an "unbroken wholeness," which sometimes can give rise to
manifestations that appear to be two separate objects.

As a further example, Bohm considers a device consisting of two concentric
glass cylinders, separated by a highly viscous fluid such as glycerine, which is so
designed that the outer cylinder can be turned very slowly, thus causing the
diffusion of the viscous fluid to be negligible. If one puts a droplet of insoluble
ink into this viscous fluid and slowly turns the outer cylinder, the ink will become
strung out into a thread that finally becomes invisible. When the rotation of the
cylinder is reversed, the ink will suddenly become visible again. Now, it could be
said that the ink particles have been enfolded into the glycerine, like an egg is
enfolded into a cake. But while one can in no way unfold the egg, the material of
which undergoes irreversible diffusive mixing, it is possible to unfold the ink
droplet from the glycerine, because in this case the mixing is viscous, diffusion
being prevented by the slow turning of the outer cylinder.

Now suppose that, instead of a single ink droplet, one starts with two
spatially separated droplets. When the outer cylinder is turned, each droplet will,
as before, become enfolded until finally particles from both droplets appear to
intermingle at random. Despite appearances, however, the ink particles retain
their identification by origin because they are correspondingly drawn out into two
threads that remain separate and distinct, indeed in such a way that, on reversal of
the fluid motions, the threads will unfold ultimately to reconstitute the respective
droplets from which they originated. With the help of this analogy, Bohm draws a
distinction between what he calls the enfolded order and the undisguised, or
unfolded, order, which constitutes our ordinary description of reality.

In a situation where the threading out of "droplets," as before, exists, one
must make a distinction between wholes according to where the process of
unfolding would produce a droplet or whether it would produce two droplets, and
so on (different states of the vacuum). It is possible to have situations where what
is going to be visible is only a very small part of the enfolded order, and one
therefore introduces a distinction between what is manifest and what is not.
Reality enfolds and becomes nonmanifest, or it might unfold to reveal a manifest
order, and then enfold again. Bohm claims that, whereas the fundamental
movement of Descartes is one that crosses space in time, a localized entity
moving from one place to another, his own fundamental movement is marked by
folding and unfolding. In this theory it is obviously possible to have interactions
between two entities that manifest themselves as two separated objects, and in
principle this view would resolve the EPR paradox.
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5.1.2. Superluminal Motions in an Ether of Rigid Particles
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A second possible solution of the EPR paradox is the nonlocal model of
Vigier and collaborators.v" They adopt the idea, first proposed by Dirac,(4) that
the ether, with suitable properties, is not ruled out by special relativity, especially
if account is taken of the probabilistic nature of quantum phenomena. It is
assumed that the velocity distribution of the particles constituting the ether has a
constant value over the hyperboloid

In such a case, in fact, the velocity distribution looks the same to all observers,
and the ether does not produce any physical effect on moving bodies. In Vigier's
model this etherlike physical vacuum is made of extended rigid particles that can
support within their interiors signals with superluminal velocity. The statistical
properties of quantum objects then merely reflect the real random fluctuations of
the ether.

In this theory there are also quantum waves that propagate as real physical
collective excitations (i.e., as density waves) on top of Dirac's ether. In this way
information originating on the boundary of the \jJ-wave (such as the opening or
closing ofa slit in the double-slit experiment, or the observation of one of the two
particles forming an EPR pair) reacts with superluminal velocity (via the quantum
potential) on the particle motions that propagate with subluminal group velocities
along the flow lines of the quantum-mechanical \jJ-waves.

In Vigier's opinion the existence of superluminal propagation does not
necessarily imply a breakdown of causality, if "causality" is defined as follows:

1. Possibility of solving the two-particle problem in the forward (or back
ward) time direction as a Cauchy problem;

2. Timelike nature of all particle trajectories;
3. Invariance of the formalism under the Poincare group of transformations.

The following consequence can be drawn from a theory with superluminal
connections. A particle on Earth and another in Andromeda form an EPR pair
whose deterministic evolution is governed by equations containing non local
potentials such as Bohm's. Either one finds out what the other is doing right away
and reacts accordingly. If the particle on Earth is subjected to a magnetic field,
say, the other will respond instantaneously via the superluminal physical
connection. The particle in Andromeda could, for instance, hit a detector if
(and only if) the magnetic field in question is on. Using ensembles of correlated
EPR pairs, it then becomes possible to transmit instantaneous information from
Earth to Andromeda.
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5.1.3. Nonlocal Sea of Microlevel Potentialities

Stapp believes that the quantum-mechanical predictions for the situation
dealt with in the EPR paradox have been accurately confirmed "under experi
mental conditions essentially equivalent to those needed for the EPR argument."
Hence he concludes that the world we live in is nonlocal. However, he does not
believe that the results obtained by Bell(5) and by Clauser and Home(6) establish
that nonlocality is required because, in his opinion, these authors made very
strong assumptions about microscopic reality that are not compatible with
orthodox quantum thinking. The refusal of these "strong" assumptions of realism
does not imply, however, any retreat to idealism or subjectivism. They can be
replaced by a variant of the Copenhagen interpretation.

Stapp distinguishes between a strict Copenhagen interpretation, in which
nothing is said about any reality lying beyond our observations, and an informal
interpretation, in which one accepts the commonsense idea of a macroscopic
reality that exists independently of our observations and can be described, at least
approximately, with the concepts of classical physics. This "informal" inter
pretation is at least partly related to Heisenberg's idea of a transition from the
"possible" to the "actual" taking place during the act of measurement. Stapp's
microworld is a "sea of micro-level potentialities" that become "well -defined"
physical properties only by interacting with an experimental apparatus.

A model theory proposed by Stapp(7) contains certain "hidden variables" "-,
which represent all the deterministic and stochastic quantities that characterize the
unified organic world and that are not used to provide the basis for a factorization
structure of probabilities; they do not reflect ideas of separation, localization, or
microscopic structure. Stapp writes A= (A' , A"), where A' is strictly predeter
mined and A" is any stochastic variable.

It is also assumed that every act of measurement involves a choice, which
picks the actual from among what had previously been mere possibilities: The
choice renders fixed and settled something that had prior to the choice been
undetermined. A "choice" variable Z is also introduced and written Z(x, y) ,
where x and y represent the choices of experiment in the regions Rex and R~,

respectively, where two correlated observations of EPR type are made. The
"choices" x and yare treated as independent free variables. Each can assume an
infinite number of different values.

Suppose the observables A and A' can be measured on the o-particle, and B
and B' on the ~-particle. The choice variable picks one observable before
measurement. More precisely, the chosen observable in Rex is

A if x E X ; A' if x E X '

where X U X' is the set of possible values of x. Symmetrically, in R~ the chosen
observable is

B if y E Y; B' if y E Y'
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where Y U y' is the set of possible values of y. So four possible joint measure
ments can be performed, depending on the values assumed by x and y : (A, H);
(A, H'); (A', H); (A' , H'). The outcomes of whatever measurements have been
chosen are assumed to be r(l(x,y, A) in R(land r~(x,y, A) in R~. A dependence of
r(l on y and of r~ on x is clearly nonlocal; in a local theory r(l, for instance, cannot
depend on a choice made arbitrarily far away in R~

Stapp could easily prove that the local choice contradicts the empirical
predictions of quantum theory and concluded:

Neither determinism, nor counterfactual definiteness, nor any idea of reality incompa
tible with orthodox quantum thinking need be assumed in order to prove the
incompatibility of the empirical predictions of quantum theory with the EPR idea
that no influence can propagate faster than light.

The remark about the absence of a "counterfactual definiteness" is justified by
the important fact that in Stapp's theory the choice ofx and y and Afixes the value
only of the observable that is actually measured; the values of the other three
observables remain completely indefinite .

5.2. RETROACTIONS AND ERGODICITY

5.2.1. The Victory of Formalism over Modelism

The possibility of modifying the past by means of retroactions from the
future was first proposed as a solution to the EPR paradox by Costa de
Beauregard.l" He noted that twice in classical physics contradictions between
factlike irreversible processes and the lawlike reversibility of the physical theory
had been discovered.

(i) When Boltzmann used statistical mechanics for deducing the Second
Law of Thermodynamics: The paradox inherent in extracting time
asymmetry from a theory like Newtonian mechanics that is intrinsically
time symmetric was exposed in specific forms by Loschmidt and
Zermelo.

(ii) When the principle of retarded waves was used in physical optics and
in classical electrodynamics in order to exclude one-half of the mathe
matically permissible solutions of the wave equations.

Costa de Beauregard's idea is that a careful examination of nature is bound to lead
to the conclusion that retroactions in time do play a role and should not be
discarded as in (i) and (ii). One way to see this is to remember that for Aristotle,
to whom the concept is due, information was not only knowledge, but organizing
power. The examples he gave were the craftsman's or artist's work and biological
ontogenesis. A second way to see a final cause at work is to consider modern
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cybernetics, which, surprisingly, rediscovered the two faces of Aristotle's "infor
mation." In computers and other information-processing machines the chain

. r. . (1) (2) • r. .
mtormation -+ negentropy -+ mrormation

means that a concept is coded and sent as a message, before being decoded and
received. Negentropy is negative entropy. Step (2) is the learning transition,
where information represents an increase in knowledge, while step (I) is the
willing transition, in which information appears as organizing power.

In the theoretical framework (dejure) there is a complete symmetry between
the two transitions. In spite of this there is a disymmetry in practice (de facto)
because irreversibility is generated by misprints in the coding, noise along the
line, mistakes in decoding, and so on.

The relationship between the variation of negentropy AN and the variation
information IiI is

AN = kln21iI

If N and I are both expressed in "practical" units, it turns out that the factor
multiplying IiI is very small, about 10- 16• Therefore, concludes Costa de
Beauregard, it is very difficult to produce important increases of negentropy
(decreases of entropy) by increasing the information. Vice versa, even a very
small increase of negentropy can give rise to a large gain of information. If one
lets k -+ 0, one obtains a situation where gaining knowledge is absolutely
costless, but producing order is impossible. In this limit consciousness is made
totally passive; it registers what is going on without it, and does no more.

If the roots of Costa de Beauregard's conceptions go deep into classical
physics, it is in quantum theory that he thinks the most important effects of
retroaction can be seen. Again, he stresses, the theory is completely time
symmetrical, but only until measurement causes the collapse of the wave
function . At this point quantum theory commits itself to the philosophy of
retarded waves. In Costa de Beauregard's opinion this happens because "the
Copenhagen school has forgotten the hidden face of Aristotle's information."

It is precisely in the situations envisaged by the EPR paradox that his
"hidden face" shows up again. In order to understand the essence of the EPR
paradox, Costa de Beauregard considers the mathematical apparatus of quantum
theory and concludes that the problem is today only that of tailoring the wording
of the EPR situation to suit the mathematics; in his opinion there has, in the
twentieth century, been an irreversible victory of formalism over modelism.

From this starting point he deduces that when an EPR pair, for instance two
photons described by a nonfactorizable state vector, is measured by two observers
in two regions separated by a spacelike distance, it is precisely the act of
observation that produces the right physical properties of the photon pair in the
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past of the measurement process . Each observer is thus considered capable of
telediction plus teleaction, by taking, as it were, a relay in the past, more precisely
in the source that emitted the two photons .

According to this theory the element of reality introduced in the formulation
of the EPR paradox can be considered real, but ought to be viewed as being
created by actual acts of observation; it then propagates backward in time with
one of the two correlated quantum objects from the region of measurement to the
source.

In particular, there can be no question ofassociating elements of reality with
unmeasured observables, as done originally by EPR, and later by Bell and by
other authors. In this sense the solution of the EPR paradox proposed by Costa de
Beauregard is similar to Bohr 's. Others, such as Stapp,(9) Davidsonv'" Rayski.i' I)

RietdijkY 2
) Cramer,(13) and Sutherland, (14) have proposed similar solutions.

5.2.2. A Polarizable Fundamental Medium

According to the nonergodic interpretation of quantum mechanics, a
sequence of quantum objects, even if separated by large time intervals, do not
behave independently in their interactions with the measuring apparatus . These
objects may interact with one another by means of memory effects in a
hypothetical medium, filling the space they cross on their way toward the
measuring instruments.

Consider, for instance, the two-slit experiment. The indirect interaction in
question is such that a particle passing through a slit knows if the other slit is
open, because this is somehow recorded in the medium filling the space between
the two screens. Those particles that came from the second slit modified the
physical properties of space and gave rise to the storage of the information in
question. Obviously, interference can happen only after a sufficiently large
number of particles have crossed the apparatus and conditioned the medium. In
this way particles interfere with other particles, but only indirectly through the
medium."5, 16)

More generally, consider a quantum experiment repeated many times, every
repetition being called a "run." Let R represent the number of runs and N the
number of quantum objects in every run, assumed constant for simplicity. Let A.rn

represent the state of the nth particle in the rth run and s.; the state of the
experimental apparatus just before interacting with the nth particle of the rth run.
The result of the measurement, Arm is assumed to be completely fixed once A.rn

and s.; are given. Therefore,

(1)



202 CHAPTER 5. PROPOSED SOLUTIONS OF THEPARADOX

Starting from these numbers two types of averages are possible:

_ 1 N - 1 R

Ar = N L Am' An = R- L Amn=1 r=1
(2)

Here, Ar is called the run average, An is the ensemble average at "time" n.
Buonomano'P! observed that it is always implicitly or explicitly assumed that
Ar=An (ergodic assumption) but that such an assumption should really be
checked with suitable experiments. In order to do so it is clear that the only
possibility of avoiding the medium polarization effects is to keep the runs distant
in time from one another, and eventually in different regions of space where no
experiments have been carried out. Thus, the ensemble average for n = 1 is
An = 1, which should represent events collected in conditions where the medium
does not act on the particles (no memory effects for n = I, since no previous
particles entered the apparatus in each of the considered runs!) . Therefore An=1
should describe a situation in which no quantum_phenomenon manifests itself
and classical physics holds unreservedly. Instead, An for large n and Ar for all r
describe quantum-mechanical situations . The case of An for not too large values
of n, but with n f 1, represents mixed situations where a transition between
classical and quantum physics is taking place .

This nonergodic interpretation of quantum mechanics can, in principle,
solve the EPR paradox because it can explain the apparent violations of local
realism due to nonergodic effects within a strictly local theory. Consider the left
side of a polarization-correlation experiment and divide the space between
polarizer and source into M cells, numbering them from left to right. Thus, the
polarizer is in cell I and the source is in cell M. Assume that the state of cell M
depends on the previous state of the neighboring cells. It follows that after one
photon has passed, the state of cell 2 depends on the state of the polarizer. After
two photons have passed, cell 3 depends on the state of the polarizer, etc. Then
after n 2:M photons have passed, cell M (that is, the source) depends on the state
of the polarizer.

If the right side of the polarization-correlation experiment is treated in the
same manner, one obtains a situation in which the source produces pairs of
photons in a state dependent on the configuration of the analyzing-detecting
apparatus. As is well known, no Bell-type inequality can be obtained in such a
case, and the EPR paradox does not exist.

5.2.3. Generalized Probabilities

The idea of negative probabilities has been entertained by physicists,
including Dirac and Feynman. In 1942 Dirac expressed the opinion that

Negative energies and probabilities should not be considered as nonsense. They are
well-defined concepts mathematically, like a negative sum of money, since the
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equations which express the important properties of energies and probabilities can still
be used when they are negative. Thus negative energies and probabilities should be
considered simply as things which do not appear in experimental results.'!7)

In 1982 Feynman'l'" stated that the only difference between a probabilistic
classical world and the quantum world "is that somehow or other it appears as if
the probabilities would have to go negative . . . ."

Following these ideas, a "negative-probability solution" of the EPR paradox
has been proposed by Muckenheim'l'" (see also Maddox(20» . In order to under
stand the logical possibility of solving the EPR paradox by extending the range of
variation of probabilities, one should remember that in the proofs of Bell's
inequality the implicit assumption is always made that probabilities (and
frequencies in ensembles) are positive and never larger than unity. For example,
in Wigner's proof of Bell's inequality the probabilities pes, s'; I, I') were intro
duced [see Eq. (75) of Chapter 1], which were, by definition, positive and not
larger than unity. Similarly, the proof based on factorizable probabilities used in
an essential way the inequalities 0 :s x, x', y, y' :s I, where x, x', y ,y' were later
identified with probabilities. If these conditions are relaxed in both examples, the
validity of Bell's inequality no longer follows.

In view of these considerations it is perhaps not surprising that Miickenheim
could build a negative-probability local hidden-variable model that reproduces all
the predictions of quantum theory for the "singlet" state of two spin-! particles .

The two particles have a spin vector, S for the first one and - S for the
second one, where S is assumed to have a random distribution over the sphere of
radius (,J3/2)/1 in a statistical ensemble of such pairs. The length (,J3/2)/1 is
chosen in such a way as to reproduce the quantum-mechanical eigenvalue of S2,
which is i /1 2• If a is a unit vector, the projection of S over li satisfies

,J3 ~ ,J3
--/1 < Sa < +-/12 - - 2 (3)

Next Miickenheim assumes that the probabilities m(a+, S) and m(a-, S) of
measuring S · li and finding the positive and the negative eigenvalue, respectively,
are linear functions of S · li and that their expressions satisfying

are

m(a+, S) + m(a-, S) = 1 (4)

~ 1 S·li
oo(a+, S) =2+-': and

~ 1 S·li
m(a-, S) = 2--,: (5)

Obviously these probabilities can assume negative values because of (3).
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For an EPR pair one can consider the case of correlated spin measurements
along a and b for the first and second particle, respectively. The correlation
function is

A fz2 J A A

P(a, b) = 161t dO. [oo(a+,S) - oo(a- , S)][oo(b+, -S) - oo(b-, -S)] (6)

Substituting (5) in (6) and integrating give

A fz2 A

P(a, b) = -4a.b

which coincides with the quantum-mechanical correlation function for the singlet
state. A local model is thus able to reproduce the quantum-mechanical violations
of Bell's inequality if negative probabilities are introduced .

It has also been shown that the introduction of complex probabilities in the
EPR paradox can reconcile locality with the quantum-mechanical predictions.V!'
Negative probabilities have even been invoked,(22) in the context of kaon pairs
involuntarily.(23)

5.3. VARIABLE PROBABILITY OF DETECTION

The idea of "variable probabilities" as a solution of the EPR paradox starts
from the evidence provided by the performed experiments with atomic photon
pairs and assumes that the inequalities of strong type (deduced from local realism
and additional assumptions) are violated.

The point of view adopted with this line of research is that the additional
assumptions , not local realism, should be blamed for the failure of the strong
inequalities. One must then study local models of reality in which the logical
negation of the additional assumptions is explicitly taken as true. The interesting
models should thus imply the simultaneous validity of the following three
statements:

1. Given that a pair of photons emerges from two regions of space where
two polarizers can be located, the probability of their joint detection from
two photomultipliers depends on the presence and/or orientation of the
polarizers (CHSH property).

2. For a photon in state A the probability of detection with a polarizer in
place on its trajectory can be larger than the detection probability with the
polarizer removed (CH property).

3. For a photon in state A the sum of the detection probabilities in the
"ordinary" and "extraordinary" beams emerging from a two-way polar
izer depends on the polarizer's orientation (GR property).
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From a general point of view one can maintain that local realism cannot be
refuted by experiments designed for testing the strong inequalities. Only if weak
inequalities could be tested could a crucial confrontation between quantum theory
and local realism finally take place. This appears unlikely in the foreseeable
future as far as experiments with pairs of atomic photons are concerned. This
situation is, however, much better for some proposed particle physics experiments
discussed in Chapter 4, since detectors are in those cases nearer to the ideal
behavior.

Even in the case of low-efficiency detectors there are interesting investiga
tions to be carried out, for example by replacing the usual additional assumptions
with more physical restrictions. After all, it is unlikely that the large disagreement
between quantum theory and local realism for high-efficiency detectors becomes
a perfect agreement for low-efficiency detectors! For example, it would be
interesting to study the use of symmetrical functions for describing the detection
processes of the two photons, since it has been shown by Caser(24) that the
quantum-theoretical predictions cannot in such a case agree with the factorizable
probabilities.

5.3.1. A Particular Local Model

Bell's inequality'<'can be written in several ways, for instance in terms of the
coincident probability mea, b) that the two photons of an EPR-type experiment
are detected by two counters after crossing two polarizers with axes a and b. It
then reads

-1 :::: mea, b) - mea. b') + mea', b) + mea', b') - t,(a') - t2(b) :::: ° (7)

where t l (a') [t2(b)] is the probability that the first (second) photon is detected after
crossing a polarizer with axis a' (with axis b), irrespective of what happens to the
second (first) photon.

Now the quantum-mechanical predictions are

m(x,y) = H(EM + Em)2 + (EM - Em)2F cos 2(x - Y)]111112

t,(a') = !(EM + Em)11 I (8)

tib) = !(EM + Em)112

where EM and Em are well-known parameters related to the efficiencies of the
polarizers, F is a geometrical factor, and 111 and 112 are the quantum efficiencies
of the two counters .

Although the quantum efficiencies for the (ideal) case in which

EM=I , Em=O, F=l , 111=112=1
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are known to violate Bell's inequality, such efficiencies are currently impossible .
The parameters €M, €m, and F are close to their ideal values, but the quantum
efficiencies of the two counters are much less than unity. Typical values are
11 1~ 112 ~ 0.15 . It is very easy to see that inequality (7) cannot be violated by (8)
if 111 and 112 have such values. This point was discussed at length in Chapter 3.

Here a detailed model of the photon with variable detection probability
(VDP) will be constructed which: agrees exactly with the usual quantum theory
for single-photon experiments; agrees very closely (within the existing experi
mental errors, although not exactly; see Caser(24» with quantum theory for the
EPR-type experiments so far performed; leads to new predictions if the experi
mental apparatus of the latter experiments is somewhat modified.

Every photon is assumed to possess a physical vector I perpendicular to its
direction of motion. If the photon impinges on a polarizer with axis oriented
along the direction a, the local interaction between photon and polarizers is
assumed to be such that if the angular distance of I from ±a is less than 45° the
photon is transmitted with certainty; otherwise it is absorbed with certainty.
Figure 5.1 represents the photon transmitted with certainty.

In general if I belongs to the hatched region Ra of Fig. 5.1 it will be
transmitted; if it is outside Ra it will be absorbed . A precise mechanism producing
transmission or absorption for given I and acan be freely invented by the reader;
only one feature of it interests us here-the fact that it is local; in other words, it
depends only on the given photon, the polarizer, and their mutual physical
interaction . A natural assumption is that a beam of N "unpolarized" photons is
represented by an ensemble of I-vectors uniformly distributed over 2n. Since the
region Ra of Fig. 5.1 covers exactly half of the possible directions, there will be,
on average, N/2 photons transmitted and N/2 absorbed and the transmission
probability will be ! in agreement with experiment.

a

FIGURE 5.1. Hidden-variable model for photons. A photon with polarization vector I and interacting
with a polarizer with axis ais transmitted if flies in region R" . and absorbed otherwise.
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Obviously this model, like an hidden-variable models, contains dispersion
free states, which are those describing a statistical ensemble of (single) photons,
all with the same I: for such dispersion-free ensembles the choice between
transmission and absorption is fixed for all conceivable polarizer orientations.

Quantum states can also be defined, in the following way: a statistical
ensemble of photons with I-vectors an contained within the region Ra of Fig. 5.1
is such that an photons will be transmitted with certainty through a polarizer with
axis a. Moreover this is true of the I angular density, which gives the right
probability for transmission through two consecutive polarizers, the first with axis
aand the second with axis a'. It is given by

PI(I' - a) =!cos2(/' - a),

=0.
(9)

Notice that cos 2(1' - a) is never negative in Ra (that is, for -rt/4 .::: I' - a .::: rt/4
and for -3rt/4.::: I' - a .::: 5rt/4) and can therefore represent a probability.
Furthermore.

J I Ja
+

1I
/
4

Idl' -cos 2(/ ' - a) = 2 dl' -cos 2(1' - a)
R" 2 a-1I /4 2

I JlI

/

2

=2 dxcosx = I
-11/2

The probability P(a'la) that a statistical ensemble of photons with I density given
by (9) crosses a (second) polarizer with axis a' is obviously equal to the
probability of finding I' in the intersection of regions Ra and Ra, (Fig. 5.2).
This implies

jll/4+a I JlI
/
2

P(a'la) = 2 dl' p,(1' - a) = - dx cos x
a'-11/4 2 2(a' -a)-1I/2

= cos2(a - a') (10)

The quantum-mechanical probability (Malus 's law) is thus reproduced. This is
true, in general , if one assumes that the part of a photon beam transmitted through
a polarizer (with axis a) always has its I-density modified from whatever it was
before transmission to the density (9). This sudden change of the density of the 1
vectors is an essential ingredient of the present model if the quantum-mechanical
probabilities are to be reproduced.

One can now introduce a new feature of the model, which does not modify
in any way the previous conclusions but which will tum out to be of great
importance in the study of experiments of EPR type. It is a variable detection
probability (VDP) dependent on a new vector ~ associated with every photon.
The detection probability D(/, A) is assumed dependent both on the new variable
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FIGURE 5.2. Hidden-variable model for photons. A photon that has crossed a polarizer with axis Ii
and has polarization vector I' will cross a second polarizer with axis Ii' ifl' lies in region Ro n Ro" and
be absorbed otherwise.

Aand on the "polarization" variable I. Its A-average is furthermore assumed to be
I-independent and equal to the quantum efficiency 11 of the photon detector in
question:

(D(l , A)h = 11 (II)

The value of A is furthermore assumed to be left unchanged by the photon
crossing any optical device (polarizer, prism, half-wave plate, . ..). Its only active
role is in the detection process. Of course, no A-parameter is known within
standard quantum theory. However, it is well known that von Neumann's theorem
and all theorems of the same type are unable to avoid deterministic general
izations ("completions") of quantum theory. They are a fortiori unable to forbid
the introductionn of parameters, such as the Aentering in (II), which do not lead
to a deterministic model but allow for a more detailed probabilistic description .
The usefulness of such a description should therefore be judged only on empirical
grounds .

The photon model just developed will now be applied to an EPR-type
experiment. A source S emits pairs of photons that are geometrically selected to
travel in roughly opposite directions, cross suitable filters (not shown), and
impinge on polarizers. The photons traveling to the left and right of Fig. 5.3 will
be called L- and R-photon, respectively. Now the L-photon has linear polarization
variable I and detection variable A, as determined earlier. It crosses the polarizer
with axis awith a probability

(12)
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Fig. 5.3. Two correlated photons (X and ~ are emitted simultaneously by the source S, interact with the
polarizers with axes a and b, respectively, and possibly enter the photodetectors PM, and PM2>
respectively.

where Ra is defined by -rt/4 ~ I - a ~ rt/4 and 3rt/4 ~ I - a ~ 5rt/4. If it does
cross the polarizer, its I-vector is modified in such a way that its probability
density becomes p/(I' - a), as given in (9). The A-vector is unmodified by the
crossing of the polarizer and gives rise to a detection probability D, (I' , A).

Similarly the R-photon, which in the case of the state with J =0 and positive
parity is assumed to have the same I-vector as its companion L-photon, will cross
the polarizer with axis bwith probability

(13)

where, of course, Rh is defined by -rt/4 ~ 1- b ~ rt/4 and 3rt/4 ~

1- b ~ 5rt/4. If the R-photon crosses the polarizer, its I-vector is modified in
such a way that its probability density becomes

P2(1" - b) = ~cos2(1" - b),

=0,
(14)

The A'-vector of the R-photon is unmodified by the crossing of the polarizer and
gives rise to the detection probability D2(1" , A').

Assuming an isotropic initial distribution of the I-vectors, one has for the
coincidence probability w(a, b):

w(a, b) = ~Jrr dlJdA dA' p(A- A') J dl' p,(I' - a) J di" P2(1" - b)
o R" R"

X DI(I ' - A)TI(/-,a)T2(1 - b)D2(1" - A') (15)

where all functions of two variables depend only on the difference of their
arguments because of space isotropy. Obviously, w(a - b) as given by (IS) will
factor in a double-transmission probability and a double-detection probability,
respectively given by

(16)
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D12(a - b) =Jo. dA' PCA - A')J dl' p ,(I' - a)J dl" P2(1" - b)
Ru Rh

X D, (I' - A)D2(1" - A') (17)

(18)

The calculation of TI2 is straightforward with the definitions (12) and (13) of
T,(I- a) and T2(1 - b) since both photons can cross their respective polarizers
only if I belongs to Ra n Rb :

I Jlt
/
4
+

a
I [2 ]Tda - b) = - dl = - I - -(b - a)

1t - It/4+b 2 1t

where angles are assumed to increase counterclockwise and b » a. Result (18) is
valid for only 0 S b - a S 1t/2 It can be generalized for -1t/2 S b - a S 1t/2
(that is, in practice , for all angles) and for realistic experimental conditions and
gives

T'2(a - b) =~ [(EM + Em )2+ (EM - Em)2F(1-~Ib - a l) ] (19)

For the double-detection probability one can write

l1i2(1' - I") = Jdt: o: peA - A')D,(I' - A)D2(1" - A')

= L (tXncos 2n(l' - l") + ~n sin 2n(l' - l")} (20)
n

where a Fourier expansion in terms of2(1' - I" ) has been assumed for l1dl' -I")
with coefficients «; and ~n ' When (20) is inserted in (17) one obtains

Dda - b) = L {tXnCn + ~nSn}
n

where r: Jb+lt /4Cn = dl'cos2(I'-a) dl"cos2(I"-b)·cos2n(I'-l")
a-lt/4 b-lt/4r. [+It/4S; = dl' cos 2(1' - a) dl" cos 2(1" - b) · cos2n(1' - l")
a-lt/4 b-lt/4

A rather lengthy but straightforward calculation leads to the results

I
Cn = (n2 _ I) cos2n(a - b)

S; = (n2~ 1) sin 2n(a - b)

if n is even, and to Cn = S; = 0 if n is odd.

(21)

(22)

(23)
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(26)

Therefore,

D I2(a-b)= L { r:t.n 2cos2n(a-b)+ ~n 2Sin2n(a-b)} (24)
n,even (n2 - 1) (n2 - 1)

Retaining only the first few terms of this result, one has, for 00,

m(a - b) = Tda - b)[l + ~ sin 4(a - b) + .. ']1'11 112 (25)

where 11, and 112 are again the quantum efficiencies of the two counters, to which
the averages of D , and D2 have to be identified, and ~ is an unknown parameter.

It is gratifying that the correction to T12, due to correlated detections from
the two counters, has exactly the form needed in order to make the straight-line
correlation provided by TI2 approach the quantum-mechanical formula . In fact,
sin4(a - b) vanishes exactly in the points where

~[l -~Ib-al] =~[l +cos2(b-a)]

that is, for Ib - al = 0, rr./4, rr./2. Furthermore, if ~ > 0, sin 4(a - b) gives rise to
an increased correlation for °< la - bl < rr./4, since the second term in brackets
in (25) is here larger than 1. Similarly, the same term gives rise to a decreased
correlation for rr./4 < la - bl < rr./2.

Numerically one can obtain a fair agreement with quantum mechanics (and a
violation of the CHSH inequality) by taking ~ = 0.139. This VDP model ,
although local, violates the Freedman (strong) inequality. For example,

m(i) - 3mCgrr.) = .10311 1112

Therefore, the left side of (26) is positive , while the Freedman inequality would
require it to be negative or, at most, zero, as seen in Section 3.4.4 . It can be
checked that Tda - b) satisfies the CHSH inequality, as one would expect with a
local model without VDP.

Naturally the agreement between the present model and quantum theory can
be improved by cons idering further terms in (24).

5.3.2. Divergence with Respect to Quantum Theory

The two-variable photon model developed in the previous sections agrees
perfectly with quantum theory for single-photon experiments and can be made to
agree very closely with EPR-type experiments performed to the present-that is,
with experiments in which each photon is made to cross a single analyzer before
entering a detector (Fig. 5.3).

However, the same model disagrees markedly with the predictions of
quantum theory if more than one analyzer is put on the trajectory of the
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photons.V" To see this consider the apparatus of Fig. 5.4 with two polarizers and
two half-wave plates. Let the axes of the two polarizers be a and b as before and
the axes of the two half-wave plates a' and b'. The physical action of a half-wave
plate on a beam of photons compared with that of a polarizer is similar in some
respects and different in others . It is similar because the photons emerging from it
are in a well-defined quantum state (they are polarized). It is different because, in
principle at least, all photons are transmitted and there is no polarization
dependent absorption. In the model considered here a well-defined quantum
state is represented by a density p(1' - a) as given by (9). Therefore, if the
photons cross the half-wave plate (and in principle all of them do), their I'-density
must become p(1' - a') (where the new I' is totally unrelated to the old one). A
similar situation holds for the other photon, which emerges from the two
analyzers with a density p(l" - b'). Therefore the double-detection probability
gives rise to a correlation only between a' and b', and no further correlation
between a and b can be generated by the apparatus of Fig. 5.4. The only
correlation of the latter type is the one due to the double transmission through the
two polarizers. The coincident probability for the apparatus of Fig. 5.4 is
therefore

where

0) = TnCa - b)DnCa' - b') (27)

as before, and

DnCa' - b') = L { an 2 cos 2n(a' - b') + ~n 2 sin 2n(a' - bl
) } (29)

n.even (n2 - 1) (n2 - 1)

In (27) two factors that account for the absorption of the half-wave plates have
been neglected because in practice they are never very different from unity.

•a
IJ '

FIGURE 5.4. Two correlated photons a. and ~ interact with polarizers and with half-wave plates
before entering the photodetectors PMl and PM2, respectively.
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The prediction (27) is rather different from the quantum-theoretical formula :
In usual quantum theory the change of polarization before detection has no
influence whatsoever since no enhanced correlated detections exist in this theory
and the double coincident probability is exactly the same for the two experiments
of Figs. 5.3 and 5.4:

coQM(a - b) = H(€M + €m)2 + (€M - €m)2 F cos 2(a - b)]rlt"12 (30)

In one experiment'<'" €M= .91, €m =.03, and F=.996. Therefore,

COQM(a - b) ::::: .22 1[1 +f cos 2(a - b)]rlt'112' withf = .873 (31)

In the case of only one analyzer, the VDP model can be made to agree with
quantum theory very closely. So one can write with good approximation

(32)

This relation holds for arbitrary values of a and b: writing it for a' and b' and
substituting D12(a' - b') in (27), one has

Tda - b) QM(' b')co= co a-
Tda' -b')

(33)

This last result should be compared with the quantum-theoretical expression for
the experiment for Fig. 5.4 which does not depend on a' and b' and is, again,

(34)

(36)

where (31) still holds . The ratio y of the two predictions (33) and (34) is thus

( b ' b') _ coQM(a - b) _ Tda' - h') (j)QM(a - h) (35)
ya, , a, - co - Tda _ b) coQM(a' - h')

Substitution of (19) and (31) leads to

1 +f(1 - (4/1t)la' - b'l) 1 +f cos 2(a - h)
y = 1 +f(1 - (4/1t)la - bl) 1 +f cos 2(a' - b')

A numerical calculation shows that the largest possible value of y is obtained for

where

1t
la -bl =

8
and

y::::: 2.01

10' - b'l = 71t
16

(37)

rather than y = 1, as expected within standard quantum theory.
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5.3.3. Enhanced Particle Detection

A detailed study of enhancement has been undertaken by R. Risco
Delgado.(27)

If de Broglie's model of a particle embedded in a wave is adopted, the EPR
experiments suggest that it be enriched by certain variables, which give rise to a
variable probability of detection. The following assumption shall be made: as
detection appears to be more closely related to the corpuscular than to the
undulatory nature of matter (the particle is detected where it is and not every
where on the wave front), the amplitude y(x, t) of an oscillatory movement
connected with the particle ought to be related to the probability of detection. De
Broglie gave an interpretation of his two wave functions, the objectively real wave
<p(x, t) and the probabilistic wave \jJ(x, t), but he left y(x, t) essentially uninter
preted. Perhaps the discovery of "enhancement" was necessary for a meaning to
be attributed to y(x, t) as well.

A specific model will now be described quantitatively. A photon consists of
a wave and a particle, the two oscillating in phase as in de Broglie's theory; i will
represent the direction of this vibration, which will be fixed by the angle of
polarization of the photon with respect to a certain frame of reference: wave and
particle vibrate in direction i after being emitted by the source. The probability D
of detection is proportional to IIY(x, t)1I 2

:

D = cIlY(x, t)1I 2

which is naturally related to the efficiency of the detector.
When particle and wave go through a polarizer whose axis is parallel to a,

both will vibrate along in new direction of polarization aand the amplitudes of
their movements will be multiplied by cos(l- a1 where I - a is the angle
between the vectors i and a. This is just Malus's law extended to the particle's
internal vibration.

The particle is assumed to acquire two important characteristics :

(i) The aforementioned law relating the probability of detection to the
amplitude of the particle's oscillatory movement is modified, and the
probability of detection rises to

(38)

This expression is only valid in the domain of low efficiencies. In other
words, an "enhancement" results.

(ii) The subsequent polarizers will only reduce the amplitude of the
aforementioned motions by a factor of Jcos(l- a). Such variables,
which are activated by crossing a polarizer, are common to various kinds
of models with variable probability of detection.
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Equation (38) should be emphasized. Again, let us suppose a polarizer
produces an enhancement of4/3. This factor is precisely what is required to hide
the variable probability of detection in all single-photon physics and to reproduce
atomic-cascade experiments with pairs of photons.

Before facing the calculations one should remember that the probability
P(x, t) for a particle to be found at position x at time t is proportional to the
intensity of the electromagnetic field at that point , 1I<p(x, t) 1I 2. One can therefore
use the normalized function \jI(x, t), related to <p(x, t) through the expression

P(x, t) = 1\jI(x, t)1 2 =KII<p(x, t)1I 2

where K is a normalization constant.
To see how the model works in different experimental situations, assume that

the well-known physics of the single photon is satisfied.

5.3.3.1 . One Detector

Assume an atom emits a photon in the direction of the detector. Sooner or
later the photon will certainly reach the detector if it does not encounter obstacles
on the way. Even then, the photon may not be detected, because the detector may
not be perfect. The probability roof the detector clicking will, in general, be equal
to the probability P that the photon reaches it times the probability D that, once it
has arrived, it is detected :

ro=PD (39)

The field associated with the photon emerging from the source can be
described by the function

cp(x, t) = <Po(x, t)l (40)

which represents a wave packet vibrating in direction 1and traveling from the
source to the detector. The form of <Po(x, t) will not be specified because it is not
relevant here.

Once the wave packet reaches the detector (Fig. 5.5), the probability P that
the photon is at the detector is clearly equal to unity. The field at this point will be
represented by

cp(t) = <Po(t)l

Because the probability of presence is related to it through equation

P(x , t) = Kllcp(x, t)1I 2

FIGURE 5.5 . The most elementary measurement: photon ex is about to enter the photodetector PM.
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the normalization constant K can be identified :

(41)

On the other hand, the probability D of the detector clicking figures in Eq.
(39). The oscillatory motion of the particle will be represented by the function

y(x, t) =Yo(x, t)l

and at the detector

y(t) = yo(t)l

so that

D = clly(x , t)11 = cIYo(t)12 = 11

Summing up,

5.3.3.2. A Detector and a Polarizer

(42)

After crossing the polarizer aligned along a(see Fig. 5.6), the wave cp(x, t)
and the oscillatory movement of the particle y(x, t) become

'P(x , t) = <Po(x, t)cos(l - a)a

and

y(x, t) =Yo(x, t)cos(l - a)a

while

'P(t) = CPo(t)cos(l - a)a

and

y(t) =yo(t)cos(l - a)a

at the detecto-

•a

FIGURE 5.6. Photon r:x is about to interact with the polarizer with axis b and a before eventually
entering the photodetector PM.
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As oo=PD,

and taking account of (41),

1
P(I) =-2 1I'P(t)1I2 = cos2(1 - a)

l<Pol
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Similarly, as a polarizer has been crossed and hence (38) must be applied:

D =1cllYII2 =1clYoi cos2(1 - a)

Taking account of (42) gives

D(I) =111 cos2(l- a).

Hence,

00(/) = P(l)D(/) = 111 cos\1 - a) (43)

This formula will hold for every photon. The polarization of the photons is
unknown, however, until they reach the polarizer. The light used in the cascade
experiments is unpolarized, which is expressed here by the uniform distribution
of the polarization vector I being constant. That is, all the values of I have the
same probability of being emitted:

1
p(l)dl = 21t dl

Averaging (43) over lone obtains

1
(00(1») = 211

which confirms the well-established experimental result that the probability of
detection (intensity) of a beam of nonpolarized light is halved by a polarizer.

5.3.3.3. A Detector and Two Polarizers

Much as before, one can calculate the probability P of presence at the
detector once emission has occurred and the probability D of detection once the
photon has reached the detector (Fig. 5.7). If, when the photon leaves the source,
the electromagnetic field is represented by (40), once the first polarizer has been
crossed one can write

'P(X, t) = <Po(x. t)cos(l - a)a
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•a

FIGURE 5.7. Photona. is going to interactwith two polarizers with axes b and a beforeit may reach
the photodetector PM.

The second polarizer will then attenuate according to JCOS(/ - b) so that once
the detector is reached, the field associated with the photon will have the form

'P(t) = <Po(t)cos(/- a)cos1 /2(1- b)b

This value of the field implies that the probability of the photon being present at
the detector, after the right lapse of time, will be

I
P(/) = --2 1I'P(t)1I = cos2

(/ - a)cos(/- b)
I<Po(t)I

After crossing the first polarizer the oscillatory motion of the particle is
reduced by the same factor cos(/- a):

y(x , t) = yo(x, t)cos(l - a)a

and the factor Jcos(l - b) applies again after the second has been crossed, so at
the detector this motion will have been attenuated according to

yet) = yo(t) cos(/- a)cos1 /2
(/ - b)b

Therefore, as the polarizers have been crossed,

D = ~c1lY1l2 = ~clYol2 cos2(/ - a)cos(/- b)

and therefore, taking account of (42),

D(/) = ~ 11 cos2(1- a)cos(/- b)

Hence,

m(/) = P(/)D(l) = ~11 cos4
(/ - a)cos2(/ - b)

Again, this result has to be averaged, Under the same conditions as before,
that is, for the same distribution function pc/), one has

1 4 J21t
(m(/)) = 21t 311 0 cos4

(/ - a) cos2
(/ - b) dl
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so that

(ro(/)} =!ll cos2(a - b)
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which confirms the expected result.
With these three cases the first objective has been reached, which was to

reproduce exactly the physics of the beam of photons-single-photon physics
with this simple model in which a new role, which is directly involved in the
detection process, it attributed to the vibration of the particle. It should be
emphasized that in this model, the same mechanism of "enhancement" that
accounts for the experimental results involving pairs of photons also works in
single-photon physics. This is reassuring; it would be disturbing if enhancement
were only involved in processes where it is absolutely necessary. It is perfectly
hidden, however, where there is just a single beam.

5.3.4. Correlated Detections of Two Photons

The following setups are the very ones used in two-photon experiments. A
pair ofphotons whose polarizations are correlated is generated by a source, which
may, for instance, be the cascade of 40Ca used by Aspect et al.(28) The most
natural way, in this model, to understand the correlation of the photons '
polarizations is to assume that they have the same polarization vector i. This
will be irrelevant in Sections 5.3.4.1 and 5.3.4.2 but vital for 5.3.4.3, which is the
case directly related to the experiments of interest.

5.3.4.1. Two Detectors

Now consider the probability rol2 that both detectors click when a cascade
has taken place at the source, emitting two photons in the direction of the two
detectors (Fig. 5.8). Neither photon interacts with a polarizer before reaching the
detector, so their associated fields will have the forms

k = 1,2,

when the detectors are reached. The oscillations of the particles will be
represented by

•a
FIGURE 5.8. Two correlated photons Q( and ~ enter the photodetectors PM! and PM2, respectively.
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The probability of a joint detection will be equal to the probability that one
clicks times the probability that, once the first has clicked, the second clicks. The
probability 0)1 that the first detector clicks will be the probability PI that the
particle reaches it (equal to unity because we are assuming the particles are
emitted in the direction of the detectors) times the probability D1 that, once the
particle reaches the detector, it clicks. As PI = I, and the photons are produced in
pairs, Pz, the probability that the second photon reaches the second polarizer, will
also be equal to unity. That is,

with

where k = I, 2, so that

Pk =KII'Pk11
2 = I

D, = cIlYk(t) lI z = cIYok(t)1 2 = 11k

(44)

(45)

which coincides with the predictions of quantum mechanics and experimental
results.

5.3.4.2. Two Detectors and a Polarizer

Assume, as usual, that a cascade emission has taken place and that therefore
a pair of photons has certainly emerged from the source, and, furthermore, the
two photons are traveling in the direction of the analyzers (Fig. 5.9). The
probability of a double detection will be

..-.
a f3

FIGURE 5.9. Of two correlated photons ex and ~, the first (ex) interacts with a polarizer with axis a
before entering the photodetector PMl, while the second (~) enters the photodetector PM2 directly.
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The functions PJ, P2, DJ, and D2 will now be evaluated. For photon 1, after
emission by the source,

'PI(x, t) = CPo I(x, t)/

YI (x, t) = YOI (x, t)/

(46)

(47)

and since this photon will not cross a polarizer, at the detector one can write

'PI(t) = CPo I(t)/,

Hence,

PI =KII'PI(t)1I
2 = I

DI = cllYI(t) 11
2 = clYol (t)1

2 = T\ 1

where account has been taken of (44) and (45).
Similarly, for photon 2, after emission by the source,

'P2(X, t) = CP02(X, t)/

Y2(x, t) = Y02(X, t)/

(48)

(49)

But now this photon encounters a polarizer, and hence the functions become

'P2(t) = CP02(t)cos(l- a)a

Y2(X, t) =Y02(X, t)cos(l- a)a

at the detector. So

P2(f) = KIICPozliz = cosz(l- a)

Dz(l) = cIlYz(t)1I2 =CIY02(t)lz = ~ T\z cosz(l- a)

where account has been taken of (44) and (45). Hence,

OOlz(/) = ~ T\ IT\z cos4(1 - a)

The fact that the light leaving the calcium source does not have a definite
polarization will now be expressed as

1
p(l)dl = 21t dl

Averaging over I,

which agrees with the expected result.
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5.3.4.3. Two Detectors and Two Polarizers

Here the very type of apparatus figuring in experiments used to study the
possibil ity of nonlocality will be considered. Until now the model has passed all
tests. Enhancement has already been implicitly at work. This, however, is the
decisive case (Fig. 5.10).

Emerging from the source, the photons will be characterized by functions
(46)-(49). Once the polarizers oriented along axes al and a2 have been crossed,
the fields at the detectors will be described by

'1'1 (I) = CPOt (/)cos(l- al )al

YI (I) = YOt (t)cos(l- at )al

'1'2(/) = CP02(/)cos(l - a2)a2

Y2(/) =Y02 (t)cos(l - a2)a2

The joint detection probability COl2 will be given by

C012 = PtD IP2D2

where

Pk(l) = KII'I'k(t)1I 2 = cos2(1 - ak)

Dk(l) = CIlYI(/)1I 2 = clYok(t)12 = ~11k cos2(1 - ak)

Hence,

16 4 4
codl) = 9"111112 cos (1- al)cos (1 - a2)

Averaging over l gives

The expression predicted by quantum mechanics in this case is

(co12(I)} = !111112[1 + cos 2(a] - a2)]

.--.
a

FIGURE 5.10. Standard EPR experiment: two photons (ex and ~), two polarizers (with axes a\ and
a2), and two detectors (PM! and PM2).



5.3. VARIABLE PROBABILITY OFDETECTION 223

(50)

The predictions are rather similar, especially if it is remembered that fringe
visibility equal to unity is practically impossible to obtain. In the next section
further refinements, which take account of the nonideal nature of the polarizers,
shall be introduced.

5.3.3.4. Two Detectors and Two Nonideal Polarizers

Until now it has been assumed that the polarizers are ideal, that is, that all
the light emerging from them, attenuated according to Malus's law, is polarized in
a single plane. Things are not so simple, however there is always a small chance
of finding light polarized perpendicular to the principal axis of the polarizer, that
is, along the secondary axis . The model will have to be refined to take account of
such effects. Henceforth a photon polarized along axis i impinging on a polarizer
oriented along direction a has a probability EM of emerging oriented along
direction a;the amplitude of its associated wave and of the vibratory movement
of the particle are reduced by a factor of cos(l - a). But there is also a probability
Em of it emerging oriented along alt/ 2, where alt/ 2 is a vector forming a right angle
with aand contained in the plane perpendicular to the motion . In this case the
corresponding amplitudes are reduced by a factor cos(l - a + rt/2).

The probability of a double detection will be the sum of four probabilities,
since there are four possibilities: both can emerge from the principal channels,
both from the secondary channels, or one from each. Therefore ,

0012 = P1D1p~D~ + P~D~P~D~ + P1D1p~~ + P~D~P~D~

where p1, for instance, is the probability that photon 1 emerges from the
principal channel of polarizer 1, and Dlt is the probability that if the latter has
taken place the particle gets detected . The other probabilities are defined
similarly.

A straightforward calculation leads to

1 16
(0012(1») = 2lt 9 11 1112

X {E1E~ :4 2lt( I + ~cos 2(al - a2)+ 1
18

cos4(a l - a2»)

+ E~E~ :4 2lt(1 ~ ~COS2(al - a2)+ /8 cos4(al - a2»)

+ E1€~ :4 2lt(1 + ~COS2(al - a2)+ /8 cos4(al - a2»)

+€1€~:42lt(1 +~cOS2(al -a2)+ 118cos 4(al -a2»)}
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Equation (50) can be rewritten as

1 [12128 12 1 ](oodl)) =4"111 112 €+€+ +CC 9cos2(a\ -a2)+€+€+18cos 4(al -a2)

(51)

These results can be compared with the predictions of quantum mechanics
with an experiment performed by Aspect,(28) in which the authors claimed to have
refuted local realism by 13 standard deviations . In this experiment

€1 = 0.971 ± 0.005

€~ = 0.029 ± 0.005

€~ = 0.969 ± 0.005

€~ = 0.028 ± 0.005

(52)

For these values of the transmittancies, the quantum-mechanical predictions
give

(0012) = [0.249 + 0.221 cos2(a] - a2)]111112

while the prediction of this model is obtained from (51):

(0012) = [0.249 + 0.197 cos2(aj - a2)+ 0.0017 cos4(al - a2)]111112

As Fig. 5.11 shows, the agreement with quantum-mechanical predictions is
good. In this analysis account has not been taken of the depolarization factor F,
which is usually close to 1. It has the effect of pulling the two curves together.

5.3.5. Experiments with Three Polarizers

In this section the predictions of the local model for three nonideal polarizers
will first be considered . Then the quantum predictions for the same setup will be
calculated. The interest of working these out when they should be taken for
granted is twofold. The procedure followed, although equivalent to the applica
tion of the operator formalism, has a clear realist component; the source is viewed
as emitting wave packets traveling in spacetime and once the first is detected the
other collapses nonlocally. This procedure appears to be more immediate and
intuitive than the one generally used in quantum calculations. Furthermore, what
are often called quantum predictions can be very personalized. The section ends
with a comparative study of the predictions of the local model, of the quantum
predictions, and of experimental data.

In an experimental paper the quotient

R(a2 - a3 , al - a3)
R(a2 - a3. (0)
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FIGURE 5.11. Quantum mechanics versus the local realistic model with variable detection prob
ability of Eq. (51). In the ordinate the two-photon detection probability (divided by TI1 112) is
represented, in the abscissa the angle between the two polarizers (in radians). The quantum-mechanical
curve is slightly higher (lower) for angles near 0 (near 11 /2) .

was measured, R(a2 - a3' al - a3) being the double-detection rate when all three
polarizers are in place and R(a2 - a3' 00) the joint-detection rate when there are
only two polarizers (al - a3 is the angle between al and a3' and a2 - a3 the angle
between a2 and a3; see Figure 5.12).

The quantity (52) will coincide with

P(a2 - a3' al - a3)
P(a2 - a3' 00)

P(a2 - a3' al - a3) and P(a2 - a3' 00) being the probabilities of a double
detection when there are three and two polarizers, respectively.

•a

FIGURE 5.12. Modified EPR experiment. Of two correlated photons ex and Pthe first (ex) interacts
with two polarizers with optical axes a3 and al before entering the photodetector PMI, while the
second (/3) interacts with the polarizer with axis 32 before entering the photodetector PM2.
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The prediction of this model for P(a2 - a3 , 00) has already been found and
called (0012(/»); here it shall be applied to the transmittancies of this experiment.
Now the same quantity for three polarizers, (0012(1))(3), can be worked out. The
probability of a double detection will be

0012 = 00I002

where 001 is the probability of detector 1 clicking and 002 is the probability of
detector 2 clicking.

Detector 1 can click because the photon went through the principal channel
of polarizer I, which happens Elf times if the photon is oriented along this axis,
and because it went through the secondary channel, the probability of this being
€~ if it is oriented along this other axis. Otherwise one would have to work out the
corresponding probabilities of the photon going through according to Malus's
law, multiplying the last probabilities by plt and P~ . The probability 001 will be
the sum ofthese two probabilities. The probability of the photon being detected if
it went through the primary channel of the polarizer will be denoted by Dlt, and
the corresponding probability for the secondary channel is D~. Hence,

00\ = €ltpltD1 + €~P~D~

Likewise if detector 2 clicks, photon 2 must have followed one of the four
possible channels: primary channel of 3 and primary channel of 2; primary
channel of 3 and secondary channel of 2; secondary channel of 3 and primary
channel of 2; or secondary channel of 3 and secondary channel of 2. If~M is
the probability of the photon being detected once it has reached detector 2 after
having gone through the primary channels ofpolarizers 3 and 2, and ~m' IY",M'
IY",m are defined analogously, one can write

002 =€1€~P~M~M + €1€~p~mdMm

(54)

The various values of P and D will now be calculated. The pair of photons
emerging from the source are represented by functions (46)-(49). Once the
principal channel of polarizer I, oriented along aI' has been crossed, Eqs . (46)
and (47) become

cpr (t) = <Po, (t)cos(/- al )a,
yr(t) =YOI (t)cos(l- a,)a l

If its secondary channel was crossed instead, one would have

cpj(t) = <Po ,(t)cos(l - al + i)al.lt / 2

yj(t) =Y OI (t)cos(t - a, +i)a l ,lt / 2

at detector I.
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The probabilities associated with photon I can now be calculated:

p~ = l<Vo~ (t)!"CPf(t)1I
2

= cos
2(l-

al)

1 4 I .N 2 4 2
DM = 3"111 IYOI(t),"YI (t)1I = 3"111 cos (l- at)

p~ = ~()!"CPj(t)12 = sin
2(l-

at)
I<VOI t

1 4 I m() 2 4 . 2(1 )
DM = 3"111 IYOI(t)IIIYI t II = 3"111 sm - al
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and therefore

WI = €~ cos2(l- al)~111 cos2(l- at) + €~ sin2(l- al)~111 sin2(l- al)

= ~ 11 t [€~ cos4(1 - al) + €~ sin\1 - al)]

One can likewise work out the probabilities for photon 2. After crossing the
(vertically oriented) primary channel of polarizer 3, Eqs. (48) and (49) become

cpr(r) = <v02(t)cos(l- a3)a3

~ (t) = Y02(t)cos(l- a3)a3

at polarizer 2, where a3 indicates the vertical direction. If the secondary channel
of polarizer 3 was crossed, at polarizer 2 one would have

cpi(t) = <V02(t)cos(1 - a3+ i)a3.lt/2

yj(t) = Y02(t)cos(1 - al + ~)a3.lt/2

There will be four possibilities for the values assumed by these functions at
detector 2 after crossing polarizer 2:

(i)

cprM(t) = <v02(t)COS(l- a3)cost/2(a2 - a3)a2

~M (t) =Y02(t)cos(l- a3)cosl/2(a2 - a3)a2

(ii)

cprm(t) = <v02(t)cos(l- a3)cosl/2(a2 - a3 + 1t/2)a2.lt/2

~m(t) =ym(t)cos(l - a3)cos1 /2(a2 - a3+ 1t/2)a2,lt/2

(iii)

cpiM(t) = <vm(t)cos(l- a3 + 1t/2)cos1/2(a2 - a3)a2

YiM(t) = Y02(t)cos(l- a3 + 1t/2)cos1/2(a2 - a3)a2
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(iv)

'Pim(t) = CPo2(t)cos(1 - a3 +1t/2)Cosl/2(a2 - a3 + 1t/2)a2,lt/2

yim(t) =Yoi t)cos(l - a3 + 1t/2)Cos1/2(a2 - a3 + 1t/2)a2,lt/2

The probabilities associated with photon 2 will therefore be

P'itM = ICPo:(t)III'Pf
M

(t)1I
2 = cos

2(l-
a3)cos(a2 - a3)

....2 4 I .,MM 2 4 2
lfMM = 3112IY02(t)11IY2 (t)1I =3112 cos (l- a3)cos(a2 - a3)

n: = ICPo:(t) I lI'Pf
m

(t) 11
2

= cos
2(l-

a3)sin(a2 - a3)

14m = ~3 112~() lIyfm(/)1I2 = ~3 112 cos2(l- a3)sin(a2 - a3)
IY02 1 I

P;,M =~()11I'Pi
M

(t)1I
2 =sin

2
(l - a3)CoS(a2 - a3)

ICP02 1

....2 4 1 M 2 42
umM = 3112 lYo2(t)IIIYi (/)11 = 3112 COS (l- a3)cos(a2 - a3)

n: = ICPo:(/)II/'Pim(/)1/2
= sin

2
(/ - a3)sin(a2 - a3)

D;"m = ~ 112 IYO:(/) I IIyi
m

(I) 11
2 = ~ 112 sin

2(1
- a3)sin(a2 - a3)

With these results, taking account of (54), one obtains

0}2 = !112[€~ cos\l- a3){€'it COS2(a2 - a3)+ €~ sin2(a2 - a3)}

+ €~ sin\l - a3){€'it sin2(a2 - a3)+ €~ COS2(a2 - a3)}]

Defining €i = €'it ± €~ and taking account of simple trigonometric relations, one
obtains

0}2 = !112[€~ cos4(l-
a3*€~+ €~ cos22(a2 - a3)}

+ €~ sin\l - a3){€~ - €~ cos' 2(a2 - a3)}]'

Defining also
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one obtains

(ro (1)}(3) = '11,'112 {[€I €2 €3 + €' €2 €3 cos2(a - a )]
'2 S + + + - - - I 3

I [I 2 3 I 2 3 2( )] (+ 9" C€+C + €_C€+ cos a, - a3 cos 2 a2 - a3)

+ liS [€~€~€~ + €~€~€~ cos 2(a, - a3)] cos 4(a2 - a3)} (55)

The prediction of the local model will be

[
R(a2 - a3' a, - a3)]LR= (rol2(/)}(3)

R(a2 - a3 ' 00) (ro12(l)}

where (rol2(l)} and (rol2(l)}(3) are given by (51) and by (55), respectively.

5.3.6. The Local Model, Quantum Theory, and Experiments

Since

with

Q =€~ + €~ cos2(a2 - a3)

P = €~ - €~ cos2(a2 - a3)

~€~€~ . .
~(a2 - a3' a, - a3) = 2 2 Q sm2(a2 - a3)sm2(a, - a3)

€MP+€m

The experimental data can now be compared with the local model and with
the quantum-mechanical predictions. The Stirling group only found data for three
values of the angle a2 - a3: a2 - a3 = 0°, a2 - a3 = 33°, and a2 - a3 = 67.5°.
Of these orientations of the polarizer, the first one is easily described: the two
theories are practically impossible to tell apart and agree with experimental data.
The second and third cases correspond to Fig. 5.13 and Fig. 5.14. For each value
of a2 - a3' the joint probability of detection was measured for various values of
the angle al - a3:

For a2 - a3 = 0°: a, - a3 = 0°, 22.5°, 45°,67.5°,90°.
For a2 - a3 = 33°: al - a3 = 0°, 22.5°, ~ 33°,45°,67.5°,90°.
For a2 - a3 = 67.5°: al - a3 = 0°,22.5°,45°,67.5°,90°.
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R(33°, a)
R(33° , (0)

..........•.(

\,'\

f.\ .

22.5 45 67.5 a 90

FIGURE 5.13 . Quantum-mechanical predictions (continuous line) and local realistic model with
variable detection probability (dashed line) compared with the experimental points for aJ - a3 = 33°
and variable a2 - a3 (in abscissa). (After Risco Delgado(27»

The graphs reveal that the predictions of the local model are closer than the
quantum-mechanical predictions to the experimental values. Also notice the
absence of a fundamental point, the one corresponding to a2 - a3 = 67.5° and
al - a3 = 22.5°. The absence of this point would not be so important if it did not
correspond to the very values where the disagreement between the two theories is
largest. It really is a pity that the Stirling group decided not to measure this point.

5.4. OTHER REALIST PROPOSALS

5.4.1. Chaotic Ball Model

Caroline Thompson's critical reconsideration of the EPR experiments
performed with photon pairs(29) will now be reviewed. Consider the conse
quences of the fact that, with the very weak signals involved in EPR two-photon
experiments, only a fraction of the signals are detected. How does the detector
decide which ones? In a semiclassical model of light, the signals in, say, the Orsay
experiments must be individually varied in intensity (considered as a classical
electromagnetic intensity) as they pass through beam splitters or polarizers.
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R(67S, a)
R(67S, 00)
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FIGURE 5.14. Quantum-mechanical predictions (continuous line) and local realistic model with
variable detection probability (dashed line) compared with the experimental points for
a I - a3 = 67.5° and variable az - a3 (in abscissa). (After Risco Delgado(27)

Somehow this intensity variation must determine the probability ofdetection, and
it is assumed that the process is fixed by the sum of the incoming signal and local
electromagnetic noise and by the existence ofa detection threshold for the sum. A
more complete model should perhaps take account of phase and frequency, but
the simple picture, with intensity as the only variable, is adequate for under
standing qualitatively the logic of these experiments.

The relevance of noise is apparent in the way experimenters have, in
practice, to modify the electromagnetic environment of the detector (screening,
adjusting temperature), the detection threshold, and the voltage to obtain
acceptable behavior. The criteria used for acceptability include an approximate
linear response to intensity, but the model under discussion makes linearity over
the complete range of possible intensities impossible: No conceivable distribution
of noise intensities could produce it. This point is in agreement with the well
known fact that every experimental apparatus has a limited range of applicability.
For example, the photodetectors have an efficiency not only strongly dependent
on wavelength but also variable with the intensity of the incoming beam. This is,
on its own, enough to refute the usual oversimplified picture! Surely, if all
photons are identical, as assumed in standard quantum theory, then even very few
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of them will still all have the same probability of detection . All detectors, at all
" quantum efficiencies," should, if the action of a polarizer is simply to reduce the
proportion of photons according to Malus's law, reproduce its sinusoidal shape
perfectly at all intensities . It is well known that in real experiments this is not the
case.

The possibility of a distortion of Malus's law as measured by "counts" in
EPR experiments, lies at the heart of the "detection loophole" Consider the usual
semiclassical model for an EPR experiment involving pairs of photons correlated
in polarization i, with i randomly distributed. A perfect Malus's law response
corresponds to a value of

R(rt/8) - R(3rt/8)
S = 2 R(rt/8) + R(3rt/8) = 1.414

Very weak signals will tend to distort the effective law, producing detections
only for a small range of polarization angles, near the polarizer axis, if the
assumed intensity threshold is really at work. A little mathematics shows that this
is going to lead to increased S values, with an upper limit of4, well above the Bell
limit of 2. Now experimenters are aware of this risk, and they do conduct tests
that they believe rule it out, but Thompson does not accept them as being
adequate. It is possible, by judicious choice of noise and detection threshold, to
organize the setup so that all the average properties are as expected (see, for
example, the neat 1 : 2 :4 proportions for "accidental coincidences" later), but the
experimenter cannot ensure that the underlying relationships conform to a
particular rule. In Thompson's opinion, distortion of Malus's law could be
important in, for example , Aspect's 1982 experiment, in which the value of S
based on the raw coincidence counts was 2.169 [figure from Aspect and Grangier,
Lett. Nuovo Cim. 43,345 (1985)].

Thompson has recently concluded that very large violations of Bell-type
inequalities are unlikely to be explained by the detection loophole alone. There
may be another major factor, an "emission loophole," coming into play. In the
majority ofexperiments, it is not the raw coincidence data that is analyzed but the
data after "correction" by subtraction of "accidentals." The kind ofdata involved
is illustrated by the following, which relates to Aspect 's 1981 Orsay experiment
and was extracted by Thompson from his thesis :

Raw coincidences
Accidental coincidences
" Corrected coincidences"

R(rt/8)

86.8
22.8
64.0

R(3rt/8)

38.3
22.5
15.8

R(a,oo)

126.0
45.5
80.5

R(oo, 00)

248.2
90.0

158.2
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The table shows coincidence rates (in units of counts per second), using the same
notation as in Section 3.5.1. To justify the subtraction, the experimenter has to
assume that the emissions are independent. Whether this is fair is highly
debatable, but the adjustment is undeniably important. In the current instance,
a value of S of 0.776 is converted to one of 1.208.

Thompson's "chaotic ball" model(29) approaches the detection loophole
problem from another angle. It presents an intuitive picture, with hidden variables
assumed to be distributed over the surface of a sphere. She dismisses certain
strong inequalities as invalid: those that estimate probabilities as a ratio with the
observed sum of coincidences as the denominator (discussed in Section 3.4.3).
The "fair sampling" assumption necessary for their validity may seem reasonable
under quantum mechanics but is totally unreasonable for a realist. The chaotic
ball model makes it clear that there are circumstances in which the less efficient
the detector the greater the violation of these inequalities.

This latter fact is of great importance. Experimenters openly assume the
validity of the quantum-mechanical inference that imperfections in the
apparatus can only decrease the violations . No one so far appears to have fully
appreciated that imperfections in the apparatus can increase violations with realist
models. Because of this assumption, experimenters have (practically) felt free to
choose the instrumental settings that gave the strongest violations. It is very
unfortunate that Nature appears to encourage bias here, providing all sorts of
temptations in the way! As the usual purpose of EPR experiments is to produce
an inteference pattern (which is what a coincidence pattern is wrongly perceived
to be) and to make it as clear as possible so as to study the positions and spacings
of the peaks, how can experimenters be expected to resist opportunities to
"improve" it?

In Thompson's opinion other Bell-type inequalities remain valid in principle,
however poor the detectors. They are impervious to the "detection loophole" and
require no "fair sampling" assumption. They do, however, have another draw
back, and perhaps this is the reason for which they are hardly ever used. They
depend on being able to compare coincidences with and without polarizers. It is
not possible in practice to be sure that no bias is introduced-that there is neither
natural nor introduced "enhancement." She nevertheless prefers these inequalities
to the others; at least bias is not necessarily present. They have very rarely been
violated in experiments that do not also involve the "subtraction of accidentals"
mentioned earlier. In fact, the only violation seems to be that of Freedman in his
1972 Ph.D. thesis, and here other features of the real experiment may come into
play. The particle model is seen to be inadequate not only because it attributes a
fixed "size" to the photon but also because it models its spread in time
incorrectly. There are subtle differences between the quantum-mechanical and
semiclassical concepts of coherence length, and confusion over the treatment of
emission times.
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With a purely undulatory, classical view of light, the most natural inter
pretation of the observed spectra in the Orsay experiments is that the A and B
"photons" are emitted simultaneously, and each is a wave that starts at high
intensity and decreases with a roughly negative exponential rate, only the A wave
much faster than the B. In this model polarizers have the effect of reducing the
intensity ofeach individual incoming signal. Now the "photons" are considerably
longer (the B one is above 10 ns) than the minimum duration needed for
detection. (This appears to be much less than a nanosecond, depending,
Thompson believes , more on the time taken waiting for a peak in the noise
than on the accumulated energy). Hence, since it is only the first detection that is
registered, the average registered time will tend to be later for weaker signals .
This can affect the shape of the time spectra and, unless very large windows are
used, the logic of the EPR experiments. For when polarizers are parallel, one
tends to obtain positive correlations between A and B intensities, and these
become positive correlations in times of detection so synchronization is good.
When polarizers are perpendicular, it will be relatively poor, resulting in a higher
proportion of large time differences, too large to be recognized as coincidences.
This has the net effect of increasing the visibility of the coincidence curve.

Thompson believes that a modest investment in a series of experiments
designed to look into the possible realist explanations of published EPR
experiments would tell physicists more than the most elaborate " loophole
free" experiment. By investigating performed experiments thoroughly, one
could study the responses to a change in, for instance, detector efficiency.
Low-efficiency detectors should give the most important information, and she
would expect to find clear evidence that the quantum-mechanical approach is
inadequate.

Gilbert and Sulcs(30) have arrived at similar conclusions by considering, in
particular, the possibility of "coherent noise " causing a spurious increase in
correlations. This solution reminds one of stochastic electrodynamics; see, for
example, Ref. 31.

5.4.2. Restricted Quantum Mechanics

In this section ideas of certain contemporary realist authors (M. Ferrero, T.
Marshall, E. Santos, .. .) will be reviewed, with particular reference to a recent
review paper by Ferrero and Santos .(32) They start by discussing the notion of
realism and recalling the different brands that have been proposed: convergent,
critic, epistemological, gnoseological, internal , intuitive, metaphysical, naif,
ontological, platonic, pragmatic, radical , semantic, etc. To avoid confusion they
prefer to state what realism means to them: it is the ontological principle
according to which there is an external world, independent of the subject and
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his mind, that already existed before it and that will continue to exist when the
subj ect perishes . Furthermore, this independent external world can be known.

The thesis of Hume to refute realism, used by all antirealists until our days
was the following.v''"

What argument could we use to prove that the perceptions of the mind are caused by
external objects, entirely different from them, though resembling them (if that may be
possible), and cannot have its origin in the energy of the same mind or . . . by any other
cause not yet known? In fact it is recognized that many of these perceptions, as in the
case of sleep, madness, and some other illnesses, do not have their origin in anything
external . .. How to solve this question? By experience, of course, as any other natural
question. But in this point the experience is and must be entirely silent. The mind has
never anything present to it but the perceptions, and it cannot possibly reach any
experience of the connection between perceptions and objects . The supposition of such
a connection is, therefore, without any foundation in reasoning.

To this Ferrero and Santos answer that the very existence of physics,
chemistry, biochemistry, neurophysiology, etc., explains and confirms the reality
of objects, because today one knows how the signals that give rise to the
perceptions are emitted, how they are propagated, and, at least partially, how
the neurophysiological processes transform the signals into perceptions. The
realist postulate so understood is not an arbitrary assumption because the active
relation between the subject and the world in which he operates is what proves a
posteriori the existence of an objective reality.

A further step in the establishment of a rational philosophy for the working
physicist is the assumption of locality. A very clear formulation of this idea was
given by Einstein:(34)

If one asks what, irrespective of quantum mechanics, is characteristic of the world of
ideas ofphysics, one is first ofall struck by the following: the concepts of physics relate
to a real external world, that is, ideas are established relating to things such as bodies,
fields, etc., which claim a "real existence" that is independent of the perceiving
subject. . . . It is further characteristic of these physical objects that they are thought of
as arranged in a space time continuum. An essential aspect of this arrangement of
things in physics is that they may claim, at a certain time, to an existence independent
of one another, provided these objects "are situated in different parts of space" . Unless
one makes this kind of assumption about the independence of the existence of objects
which are far apart from one another in space . .. physical thinking in the familiar sense
would be impossible . . . The following idea characterizes the relative independence of
objects far apart in space (A and B): external influence on A has no direct influence on
B; this is known as the "principle of contiguity" .... If this axiom were to be
abolished . . . the postulation of laws which can be checked empirically in the accepted
sense, would become impossible.

Action at a distance does not exist: If everything could influence anything
instantaneously, one would not have been able to observe any regularity, to
establish any law.
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Ferrero and Santos list 12 interpretations of the existing quantum theory and
notice that from the viewpoint of local realism they can be divided into two
groups according to the interpretation they give to the wave function \jJ:

(i) Ensemble interpretation . The wave function \jJ describes only an
ensemble of similarly prepared systems.

(ii) Individual interpretation . The wave function \jJ describes every indivi
dual system completely.

This distinction was clearly anticipated by Einstein in the 1927 Solvay
Meeting. He considered a simple experiment in which electrons, impinging
normally on a diaphragm with a small hole, are diffracted through it and
eventually detected by a big hemispherical photographic film placed behind.
He concluded that there are two ways of understanding the quantum-mechanical
formalism, namely:(35)

Viewpoint I. The de Broglie-Schrodinger waves do not represent one
individual particle, but rather an ensemble of similar particles distributed in
space. In this purely statistical viewpoint 1\jJ(r)12 expresses the probability density
that there exists at some position r a particle of the ensemble. Accordingly, the
theory does not provide any information about the individual process, but only
about an ensemble of them.

Viewpoint II. The theory has the pretension of being a complete theory of
individual processes. Each particle going to the screen is described by a de
Broglie-Schrodinger wave packet. According to this viewpoint, 1\jJ(r)12 expresses
the probability that at a given moment one and the same particle shows its
presence at r while the wave packet instantaneously disappears from all other
points of the screen ("collapse of the wave packet"). As long as no localization
has been effected, the particle must be considered as potentially present with
almost constant probability over the whole area of the screen; however, as soon as
it is localized, a peculiar action-at-a-distance must be assumed to take place which
prevents the continuously distributed wave in space from producing effects at two
or more different places of the screen.

Einstein objected strongly to the second viewpoint, which contains an
essential difficulty with its action at a distance, and added(36):

"It seems to me that this difficulty cannot be overcome unless the description
of the process in terms of the Schrodinger wave is supplemented by some
detailed specification of the localization of the particle during its propagation. I
think M. de Broglie is right in searching in this direction. If one works only with
Schrodinger waves, the interpretation II of 11/1,2, I think, contradicts the postulate of
relativity."

Ferrero and Santos agree with Einstein's opinion and observe that if one opts
for I within standard quantum theory, then certain problems with realism, with
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locality, and with relativity emerge. If one instead chooses II, then the conserva
tion laws are endangered for individual processes, something that Einstein
thought to have been experimentally refuted by Bothe and Geiger. They choose
the statistical interpretation of the wave function and enrich it with local hidden
variables, deducing the necessary validity of Bell's inequality.

As is well known, any proof of Bell's theorem has two steps. The first step is
the deduction of inequalities from the assumptions ofrealism and locality, and the
second the exhibition of a contradiction with quantum mechanics. Ferrero and
Santos accept the first part of the proof. Then they propose a restriction of the
theory (which they do not consider a real modification) by weakening the
standard postulates, which includes removing the postulates of measurement.

The fact that actual experiments have not refuted a genuine (that is, weak)
Bell inequality is well known to the experts, but there is a widespread belief that it
is only due to the nonideality of the measuring devices (in particular the low
efficiency of available photon counters). Furthermore, the loophole is considered
a minor practical problem that will surely be solved in the future. This belief has
been expressed by many people, including John Bell:(37

)

I alwaysemphasize that the Aspectexperiment is too far fromthe ideal in manyways
counter efficiencyis only one of them. And I always emphasize that there is thereforea
big extrapolation from practical present-day experiments to the conclusion that
nonlocality holds. I myself choose to make the extrapolation, for the purpose at least
of directing my own future researches. If other people choose differently, I wish them
every success and I will watch for their results. In particular, if you can demonstrate
that quantum mechanics imposes some limit on the degree to which the ideal
experiment can be approached, I will be very interested. I will also be very surprised!
Experimental colleagues have told me that optical photon counters could be made as
efficient as we like if size and expense are unlimited.

Ferrero and Santos propose the adoption of a "restricted quantum
mechanics" (RQM) instead of the usual theory. The main differences with
respect to standard quantum theory are that in RQM there are no measurement
postulates, and it is neither claimed that all state vectors represent physical states,
nor that all Hermitian operators represent observables. The contradiction of such
a RQM with local realism cannot be shown as a theorem, e.g., because the
violation of Bell's inequality cannot be deduced. From a conceptual point of view
the two authors argue that noise has been underestimated in quantum theory: It
does not appear in quantum mechanics, but it becomes essential in quantum field
theory. They conjecture that noise will prevent the violation of Bell's inequality
and, more generally, will eliminate all incompatibility with local realism. Bell's
"conjecture" of an irreducible incompatibility between local realism and quan
tum mechanics, according to them, is false and hence not a theorem. This implies
that there are mistakes in the many published proofs of Bell's conjecture.

In modem times, the problem of choosing the right interpretation is
"solved" within the \/f interpretation via theories of "decoherence induced by
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the environment." In the opinion of Ferrero and Santos these theories are
welcome, with independence of interpretation, because they show the consistency
of quantum mechanics with macroscopic, classical physics. They agree with
Einstein, Podolsky, and Rosen that quantum theory is conceptually incomplete,
but also with Bohr that it is complete, in the weaker sense that every state
realizable in the laboratory may be represented by a density operator. It is not
right to claim that the mere "singlet" state vector, involving only spinors, violates
the Bell inequality. To see whether the claim is true it is also necessary to know
the spatial part of the state vector.

In stochastic theory, noise is the essential ingredient and should be
considered an integral part of the theory. Noise may explain in an intuitive
form some of the most peculiar predictions of quantum theory, like the Heisen
berg uncertainty principle and the probabilistic character of measurement.

The conclusions of this important line of thinking are the following:

1. The principles of realism and locality are fundamental for the construc
tion of physics and therefore ought to be accepted.

2. Local realism leads necessarily to an interpretation of quantum
mechanics in terms of hidden variables.

3. It is not true that Bell's inequality has been empirically violated.
4. If the measurement postulates are removed from quantum theory and the

vectors-states and operators-observables relations are weakened, then it
is not possible to prove "Bell's theorem."

5. Quantum noise will probably prevent an empirical refutation of local
hidden variables.

The line of thinking proposed here is very similar to that discussed till now as far
as the first three conclusions are concerned . It was shown in Chapter 4, however,
that the incompatibility between quantum mechanics and local realism simply
arises from the existence of nonfactorizable state vectors, e.g., for two neutral
kaons, which do not depend on the parts of quantum axiomatics that Ferrero and
Santos consider superfluous. The conclusion proposed here is that quantum
theory shall undergo more drastic modifications than the ones envisaged by
Ferrero and Santos before it can become compatible with local realism.

5.4.3. A Different Version of the EPR Experiment

An important step forward in the physical understanding of atomic and
subatomic phenomena has been made with the realization of the very limited
validity of von Neumann's theorem and of all the theorems that ostensibly prove
the logical impossibility of a causal completion of quantum mechanics (see
Belinfante'Y'). The possibility of discovering dispersion-free ensembles, as well
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as "reduced dispersion" ensembles, has thus become more concrete. It is
scientifically reasonable to search for particular statistical ensembles to which
the standard quantum rules (like Heisenberg relations) do not apply: these rules
would instead be applicable to more general statistical ensembles (which might be
called " standard quantum ensembles"). Along these lines, Popper proposed(39)
what he called "a new version of the EPR experiment" in which the Copenhagen
and statistical interpretations of quantum mechanics could seem to lead to
distinguishably different predictions. In this way he hoped, like Einstein,
Podolsky, and Rosen, to demonstrate the incompleteness of quantum mechanics,
perhaps in a particular experimental situation: A particle can possess position and
momentum, in direct conflict with the principle of complementarity upon which
the Copenhagen interpretation rests.

Popper considered the experimental arrangement of Fig. 5.15, which he
analyzed as follows: A pair of particles is emitted collincarly (in opposite
directions) by a source S. A slit at position 1 later physically restricts the y
position of a particle r:J. to precision I1q~ and results in observed diffraction there
through the Heisenberg relation I1p~ ~ 1i/l1q~ , for an ensemble of such pairs.
Moreover, since the determination of the position of particles r:J. in this way gives
knowledge of the y-position of particle ~ (through collinearity), this should,
according to the Copenhagen interpretation, result in a corresponding "diffrac
tion" of particle ~ at position 2. (The wide-open slit present at position 2 is there
only to prevent photons from reaching the large-angle detectors directly from the
source). If this turned out experimentally to be the case, it would be a direct
confirmation of the Copenhagen subjectivistic dictum that "knowledge alone"

FIGURE 5.15 . Popper's ideal experiment. The physical diffraction of the quantum system a. through
the narrow slit I should generate instantaneously an identical diffraction of the correlated quantum
system ~ in the region 2, if knowledge were capable, by itself, of imposing the validity of the
uncertainty relations.
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can influence a system 's behavior. Otherwise it would be in direct conflict with
that interpretation, and, in particular, if nothing happened to particle ~ at 2, the
arrangement would allow for the determination ("preparation") of the position
and momentum of ~ in violation of the Heisenberg relation !:lp/:l.qy '" fl.

In his analysis Popper accepted that the physical restriction of the y-position
of an ensemble of particles to a region !:lqy will inevitably result in a distribution
of observed y-momenta consistent with the Heisenberg relation; this is what
happens to particle ex at position 1. Consider then the case where the pairs of
correlated particles are photons resulting from the annihilation of electron
positron pairs. (The following analysis applies to all cases in which the physical
system that gives rise to the pair of "collinear" particles disappears in producing
them.) In the rest frame ofeach e+e: pair the momenta of the emitted photons are
equal and opposite, as required . In order to perform the experiment, geometrical
considerations clearly require that the e+e: annihilations take place in a localized
region, the "source," of diameter d, say. This physical restriction (however
achieved) will inevitably result in a momentum "uncertainty" (or "scatter," as
Popper would have it) M y'" fl/d, where P is the momentum of the e+e- pair
before annihilation. Momentum conservation requires that this be imparted to the
resulting photon pairs: Collinearity is thereby disrupted to the extent that relative
to the momentum of photon ex the y-component of the momentum of photon ~

at the source will be distributed over !:lp~ '" fl / d. In order for an effect on the
momentum of photon ~ at position 2 to be observable in principle, the
" restriction" on Ws j-position imposed by the action on photon ex will have to
be such that the corresponding induced momentum "uncertainty" be greater than
fl/ d, i.e., that !:lq! < d. As may be seen from Fig. 5.16, this is impossible.

y

"

@
S

FIGURE 5.16. The diameter (Ii) of the source of correlated EPR pairs (S) implies an uncertainty for
the y component of the position of particle ~ in the region 2 larger than d.
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Thus, any effect on photon ~ resulting from an action on photon C( will be
obscured in principle by the inevitable "uncertainty" or "scatter" in p~ at the
source. So this version of Popper's experiment is bound not to give any useful
information.(40)

Positronium decay is, of course, not the only way to obtain pairs of
correlated particles. Those sources of geometrically correlated particles, like
atoms, which do not disappear in creating the systems of interest will next be
considered. In the case of two-photon atomic emission, the situation is different,
at least in principle, from the one of the e+e: pairs.

As is immediately clear from a consideration of the case of single-photon
emission from a source whose size, d, is a few atomic diameters, the momentum
uncertainty/scatter of the photon at the source is not '" h/ d (which would be far
greater than hv/ c!) but is rather '" Ii / cr (where r is the decay lifetime and cr is
the effective confinement of the photon at source). Suppose a photon is emitted in
a certain direction in the atomic rest frame. The atomic velocity v with respect to
the laboratory frame can be evaluated from Heisenberg relations, which give

/1py Ii
v ~ - > 

M - dM

if d, as before, expresses the transversal dimension of the source where the
emitting atom (of mass M) is localized. Since in all practical cases one has v « c,
the photon angular deviation in the laboratory is

e~ ~
c

whence

v Ii (Iik) Ii/1Pphoton ~ ~ hk ~ d Mc <:
(k is the photon wavenumber).

Similarly, one finds that if two photons are emitted in exactly opposite
directions in the center-of-mass frame of the decaying atom, in the laboratory
frame the uncertainty/ scatter of the momentum ofone photon relative to the other
is '" Ii/d· (Iik/Mc), which can clearly be made as small as one wishes by
choosing M appropriately. Popper's experiment, if such an ideal source existed,
would be possible, at least as far as the limitations imposed by the momentum
position Heisenberg relations are concerned.

Two-photon atomic emission is, however, never collinear in practice.
Perhaps this reflects the action of the angular-momentum/angle uncertainty
scatter. This matter will, however, be avoided, since the latter relations are
indeed uncertain. Suffice it to say that they might become meaningful if
interpreted to be scatter relations, as by Popper. Apart from this, there does not
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seem to be any way to rule out in principle the possibility that a suitable source of
collinear particles (e.g., double Mossbauer effect) might be found. The problem
of finding one seems, however, at best very hard to solve in practice.
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